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Abstract
Quantifying which nations are culpable for the economic impacts of anthropogenic 
warming is central to informing climate litigation and restitution claims for climate dam-
ages. However, for countries seeking legal redress, the magnitude of economic losses 
from warming attributable to individual emitters is not known, undermining their stand-
ing for climate liability claims. Uncertainties compound at each step from emissions to 
global greenhouse gas (GHG) concentrations, GHG concentrations to global temperature 
changes, global temperature changes to country-level temperature changes, and country-
level temperature changes to economic losses, providing emitters with plausible deniabil-
ity for damage claims. Here we lift that veil of deniability, combining historical data with 
climate models of varying complexity in an integrated framework to quantify each nation’s 
culpability for historical temperature-driven income changes in every other country. We 
find that the top five emitters (the United States, China, Russia, Brazil, and India) have 
collectively caused US$6 trillion in income losses from warming since 1990, compara-
ble to 11% of annual global gross domestic product; many other countries are responsi-
ble for billions in losses. Yet the distribution of warming impacts from emitters is highly 
unequal: high-income, high-emitting countries have benefited themselves while harming 
low-income, low-emitting countries, emphasizing the inequities embedded in the causes 
and consequences of historical warming. By linking individual emitters to country-level 
income losses from warming, our results provide critical insight into climate liability and 
national accountability for climate policy.
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1 Introduction

Quantitatively assessing the responsibility of individual nations for the impacts of climate 
change is necessary to develop and evaluate equity-based mitigation agreements (Okereke 
& Coventry, 2016) and inform legal discussions regarding climate liability (Burger et al., 
2020; Stuart-Smith et al., 2021). Furthermore, precisely quantifying whose emissions have 
caused damage to whom, and how much, is critical to advance emerging legal discus-
sions about how courts might apportion liability among the world’s emitters (Burger et al., 
2020). Climate change attribution work has long been motivated by the possibility of being 
used for liability claims (Allen, 2003; Marjanac & Patton, 2018) and scientific efforts to 
assess national responsibility for climate change have been undertaken in earnest since 
Brazil’s 1997 proposal that mitigation requirements be proportional to each country’s his-
torical responsibility for warming (M. Den Elzen & Schaeffer, 2002; Prather et al., 2009).

Despite the history of work on national attribution, individual nations’ emissions have 
not been quantitatively linked to the downstream economic impacts of warming, which 
requires an integrated analytical framework. Many previous studies have analyzed indi-
vidual steps in the causal chain from emissions to impact. Existing national attribution 
work has quantified contributions to global emissions (Ciais et al., 2013; M. G. Den Elzen 
et al., 2013; Höhne et al., 2011; Matthews, 2016), GHG concentrations (Ciais et al., 2013; 
Wei et al., 2012), global radiative forcing (Li et al., 2016; Murphy & Ravishankara, 2018; 
Ward & Mahowald, 2014), or global mean temperature change (Höhne et al., 2011; Mat-
thews et al., 2014; Skeie et al., 2017; Wei et al., 2012). At the same time, there has been a 
broadened appreciation of how varied regional temperature responses can be in response to 
global mean warming (Deser et al., 2012), which has complicated the attribution of climate 
change at local scales by requiring large ensembles of simulations with a single model. 
Separately, advances in applied econometrics have allowed scientists to tie historical warm-
ing to large effects on observed national economic productivity (Burke et al., 2015; Dell 
et al., 2012; Diffenbaugh & Burke, 2019). However, no study has combined these three lit-
erature bases in a coherent framework to quantify changes in economic output attributable 
to individual emitters. The central contribution of this study is to combine historical data 
with climate models of varying complexity to quantify the contribution of each nation’s 
emissions to the historical economic effects of warming in every other nation. This analysis 
represents an important step forward for at least four reasons.

Firstly, the legal requirement to prove standing in order to sue for climate-related harms 
means that plaintiffs must credibly link the damage they have suffered to a specific actor 
responsible for that damage (Burger et al., 2020). Attributing economic damage to global 
warming writ large is not considered legally sufficient to prove the causal role of a spe-
cific emitter (Marjanac & Patton, 2018), so existing studies that have quantified historical 
losses from climate change without connecting them to specific emitters do not support 
climate liability claims. The lack of scientific evidence linking individual emitters to the 
downstream impacts of warming has been a principal evidentiary gap in climate litigation 
(Stuart-Smith et al., 2021), so an analysis extending attribution of economic losses from 
warming to specific emitters is a key step forward.

Secondly, previous studies linking emissions to warming or warming to damages have 
often used different data, modeling approaches, or spatiotemporal resolutions, making it 
difficult to quantify national responsibility for economic impacts from existing literature. 
For example, many studies linking individual nations’ emissions to climate change have 
done so at the global (M. G. Den Elzen et  al., 2013; M. Den Elzen & Schaeffer, 2002; 
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Höhne et  al., 2011; Matthews, 2016; Matthews et  al., 2014; Skeie et  al., 2017) or grid-
cell (Wei et al., 2012) scale, as opposed to the district or country scale used in empirical 
climate-economy studies (Burke et al., 2015; Burke & Tanutama, 2019; Dell et al., 2012; 
Kalkuhl & Wenz, 2020). Two recent studies connected individual emitters to regional 
(Lewis et al., 2019, p. 201) or country-level (Beusch et al., 2022) temperature changes, but 
both did so only for the top few emitters and focused on the next several decades instead of 
the historical period, making their analyses unsuited for quantifying national contributions 
to historical losses from warming and thus present liability claims.

Thirdly, nonlinearities in the coupled climate-economy system make any inference of 
national responsibility for climate damages from existing studies irresponsible (den Elzen 
et al., 2005; Höhne & Blok, 2005; Trudinger & Enting, 2005). The efficiency of carbon 
sinks in the land and ocean decreases with increasing emissions, the economic growth pen-
alty of rising temperatures is more severe at higher temperatures (Burke et al., 2015), and 
reductions in growth compound exponentially over time (Moore & Diaz, 2015). Identi-
cal GHG emissions from different countries at different times therefore may have different 
economic effects. As a result, studies showing the effect of overall historical warming on 
the global economy (Diffenbaugh & Burke, 2019), do not, on their own, position an assess-
ment of individual nations’ responsibility for those effects (Burger et al., 2020). A key con-
tribution of our work is to interactively simulate the carbon cycle and climate response to 
individual nations’ emissions as part of an analytical pipeline that connects these responses 
to country-level temperature changes.

Finally, uncertainties compound at each step in the causal chain from emissions to 
impact (Prather et  al., 2009). Uncertainty can provide emitters with a veil of plausible 
deniability against the damages suffered by claimants. As such, responsibly assessing the 
culpability of an individual emitter for the climate damages suffered by another country 
(i.e., the signal) requires a robust estimate of the uncertainty in that culpability (i.e., the 
noise). Uncertainties in the carbon cycle response to emissions complicate attribution of 
global warming to individual emitters (Höhne et  al., 2011; Karstensen et  al., 2015; Wei 
et  al., 2014). Internal climate variability increases uncertainty further, as many local (or 
country-level) temperature changes are consistent with the same magnitude of global tem-
perature change (Deser et al., 2012). Uncertainty in the economic response to warming has 
dominated uncertainty in overall climate damage estimates (Burke et al., 2018), but it is not 
obvious which sources of uncertainty are most important in calculations of damages attrib-
utable to individual nations. Further, explicitly comparing uncertainties within the same 
framework will provide information to decision-makers about where to focus scientific 
efforts in support of climate liability discussions. Such work has not yet been performed, 
as it requires an integrated end-to-end attribution analysis, such as the one we present here.

Here we assess the economic effects of the warming attributable to each country’s emis-
sions. We use a simple carbon-climate model to estimate the contribution of countries’ 
emissions to global mean surface temperature (GMST) change, propagate these global 
contributions to the country scale using a pattern scaling approach trained on existing 
global climate model (GCM) output, and apply existing temperature-growth relationships 
to calculate the economic effects of these country-level temperature changes. To estimate 
uncertainty at each step in the causal chain, we run a series of perturbed-parameter simple 
climate model simulations, use both single- and multi-model GCM ensembles to propa-
gate global forcing to the country level, and resample the temperature-growth relation-
ship (Methods). This methodology yields a distribution of two million possible values of 
damage suffered by one country attributable to another country in each year, a distribution 
which we leverage to test the statistical significance of this damage (Methods). While the 
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burden of proof for demonstrating liability is high and nonlinearities in the climate system 
make any such attribution difficult, our work is an important contribution to the effort to 
develop evidence that can be used to make claims for legal standing.

2  Data

We use 1960–2014 temperature observations from Berkeley Earth (Rohde & Hausfather, 
2020), the 20th Century Reanalysis (Compo et  al., 2011), and the University of Dela-
ware (Willmott, 2000) (UDel), regridded to a common 1°-by-1° resolution and averaged 
together. We similarly average precipitation from Global Precipitation Climatology Centre 
(Schneider et al., 2011) and UDel at a 0.5°-by-0.5° resolution. We average multiple data-
sets to reduce observational uncertainty associated with any single gridded data product, 
as ensembles of datasets have been shown to outperform individual datasets (Gottlieb & 
Mankin, 2021). However, we note that we find very similar regression results using each 
individual data product, so this choice does not substantially affect our results (Supplemen-
tary Fig. 1). While our analysis focuses on the effects of temperature, we use precipitation 
data as a covariate in the statistical model (Methods).

This observational data is aggregated to population-weighted country means using year-
2000 population data from the Gridded Population of the World (Center for International 
Earth Science Information Network, 2016) and merged with 1960–2014 gross domestic 
product per capita (GDPpc) data from the World Bank (Bank, 2016) and United Nations 
World Population Prospects country population data. Population weighting of the climate 
data focuses the analysis on populous regions within large, geographically heterogeneous 
countries. All spatial interpolation is performed with bilinear interpolation using Python’s 
“xarray” package.

We use two sets of climate model data to sample the uncertainty in model responses to 
forcing and their representation of internal climate variability: the first realization of each 
of 12 models from the sixth phase of the Coupled Model Intercomparison Project (Eyring 
et al., 2016; Gillett et al., 2016) (CMIP6, Supplementary Table 1) and 20 realizations of the 
CESM1 Large Ensemble (Deser et al., 2020; Kay et al., 2015) (CESM1-LE). The CMIP6 
models sample uncertainty across model structure, while CESM1-LE allows us to iso-
late the role of internal climate variability in propagating global forcing to the local level 
(Hawkins & Sutton, 2009).

We use the CMIP6 “historical” and “historical-nat” simulations from 1850 to 2020; 
the historical-nat simulations extend to 2020, whereas the historical simulations extend 
only to 2014, so we splice them with the first 6 years of each model’s Shared Socioeco-
nomic Pathway 5–8.5 (SSP5-8.5) simulation to extend these simulations to 2020 (Schwalm 
et al., 2020). From CESM1-LE, we use the single-forcing experiments named “ALL” and 
“XGHG” over 1920–2020 to represent a world with and without GHG emissions. For sim-
plicity, we refer to all these experiments as “historical” and “natural.” GMST has risen 
faster in the CESM1-LE ensemble mean than in the CMIP6 ensemble mean (Fig.  1a), 
which may be due to structural model differences and to the fact that the CMIP6 models 
incorporate aerosols, which have a cooling effect. However, when considering individual 
models and realizations, the CMIP6 ensemble range encompasses the CESM1-LE realiza-
tions (Supplementary Fig. 2), so this discrepancy does not substantially affect our results.

We use monthly near-surface air temperature (“tas”) from all ensembles, resampled 
to annual means and interpolated to a common 2°-by-2° grid. While our calculation of 
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economic damages extends only to 2014, we use climate model simulations through 2020 
to enable us to smooth these data with a centered running mean in the pattern scaling anal-
ysis (Methods).

To simulate the effects of individual nations’ emissions, we use the Finite amplitude 
Impulse Response (FaIR) v1.3 model (Millar et al., 2017; Smith et al., 2018). As inputs to 
FaIR, we use 1850–2014 national fossil fuel emissions data from the Community Emis-
sions Data System (Hoesly et al., 2018) (CEDS), merged with national land use and land 
cover change (LULCC) emissions data from Houghton and Nassikas (2017). The CEDS 

Fig. 1  Attribution approach. (a) FaIR GMST change from historical emissions (red) and historical-minus-
United States emissions from 1990 to 2014 (blue). Shading shows the 95% ensemble range. Black lines show 
the ensemble mean GMST change from two GCM ensembles: the CMIP6, which provides an estimate of struc-
tural uncertainty across models, and the CESM1-LE, which provides an estimate of uncertainty from internal 
climate variability. GMST change is calculated by subtracting each simulation’s corresponding natural simula-
tion. (b) Mean national temperature change from pattern scaling using FaIR and GCM output, with FaIR-based 
historical in red and GCM output in black. Shading shows the 95% ensemble range. Map shows each country’s 
pattern scaling coefficient (Methods). (c) Relationship between annual temperature and GDPpc growth relative 
to the optimum temperature. Shading shows the 95% bootstrap range (Methods). Map shows the marginal effect 
of a 1 °C increase in annual mean temperature for each country. (d) Change in India’s GDPpc attributable to 
historical emissions (red), historical-minus-United States (U.S.) emissions (blue), and the U.S. alone (yellow). 
Boxes span the 25–75th percentiles and whiskers extend to the 2.5–97.5th percentiles. Upper text denotes the 
P-value of a Kolmogorov–Smirnov (K-S) test on the two distributions, with N denoting the sample size
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data are the official emissions data for use in CMIP6 simulations, which avoids discrepan-
cies between our FaIR simulations and the GCM output. These emissions data use “ter-
ritorial” accounting, where emissions are assigned to the countries in which they occur. 
We also compare these results to 1990–2014 “consumption-based” emission data from the 
Global Carbon Project (Peters et al., 2012) (GCP) to account for emissions embodied in 
international trade (Davis & Caldeira, 2010), though consumption-based data is only avail-
able for fossil fuel  CO2 emissions and not LULCC emissions.

3  Methods

Our approach is threefold: (1) Estimate national contributions to GMST change using a 
simple emissions-driven climate model; (2) Propagate these GMST changes into country-
level temperatures using pattern scaling methods trained on output from coupled climate 
models; and (3) Calculate the resulting economic damages using empirical temperature-
growth relationships.

3.1  National contributions to global temperature change in a simple climate model

To simulate the contributions of individual countries to global climate change, we use FaIR 
in a set of “leave-one-country-out” experiments. We run FaIR from 1850 to 2014 with total 
historical emissions to represent the historical scenario (Fig. 1a). Then, for each country in 
the CEDS data (N = 174), we simulate the same historical period with all emissions except 
those from that country (Fig. 1a). In each of the 174 sets of simulations, we remove a sin-
gle country’s contributions to fossil fuel and LULCC carbon dioxide, methane, and nitrous 
oxides; we leave other chemical species, along with solar and volcanic forcing, unchanged. 
We also run a “natural” simulation where all emissions are fixed at 1861–1880 averages 
(Smith et al., 2018).

When we use consumption-based emissions, we scale the original CEDS territorial 
fossil fuel  CO2 emissions by the ratio of consumption-to-territorial emissions from GCP. 
This procedure generates consumption-based emissions data that are internally consistent 
with the CEDS data, which avoids propagating absolute differences in emissions amounts 
between GCP and CEDS into our results.

To match our calculations of economic damage from temperature change, which are 
performed from 1990 to 2014 and from 1960 to 2014, our leave-one-out simulations with 
FaIR are forced with total historical emissions from 1850 until either 1990 or 1960, at 
which point the forcing removes a nation’s emissions. A start date of 1990 examines the 
counterfactual in which countries had phased out fossil fuels once the scientific consen-
sus on climate change became clear; a start date of 1960 examines the counterfactual in 
which postwar economic development had occurred with renewable energy rather than fos-
sil fuels. Note that global emissions include processes with ambiguous national affiliations, 
such as international shipping and aviation. We include these emissions in the global total, 
but CEDS does not assign them to individual nations, so they are never subtracted from 
that global total. As such, our leave-one-out simulations may not precisely sum to global 
totals.

Further discussion of the appropriateness of the “leave-one-out” method, explanation 
of the choice to use total emissions instead of per capita emissions, and details on how we 
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implement the perturbed-parameter FaIR simulations are available in the Supplementary 
Information.

3.2  Propagating national contributions to warming to the country level

To extend the results of our FaIR simulations to the country level, we use a “pattern scal-
ing” approach that relates GMST to country-level temperatures (Mitchell, 2003; Santer, 
BD et al., 1990; Tebaldi & Arblaster, 2014). We first calculate annual GMST from each 
model by averaging surface temperature, weighting by the square root of the cosine of lati-
tude. We then take the difference between the historical and natural simulations for each 
model for both GMST and each country’s annual temperature, and we smooth these differ-
ences with an 11-year centered running mean to reduce interannual variability, a method 
which has been previously used to reduce the influence of internal variability in pattern 
scaling (Mitchell, 2003). The centered running mean means that the value for 2014 rep-
resents the average from 2009 to 2019, inclusive, which is why we splice the historical 
CMIP6 simulations with the SSP5-8.5 projections to allow this calculation.

We then linearly regress the simulated 1960–2014 country-level temperature change 
values onto the simulated 1960–2014 GMST change values for each model (Beusch et al., 
2020; Mitchell, 2003; Tebaldi & Arblaster, 2014), motivated by the strong linear relation-
ship between GMST change and local temperature change (Seneviratne et al., 2016). Other 
pattern scaling approaches use a “delta” method that compares epoch differences rather 
than fitting a regression (Tebaldi & Arblaster, 2014), but the regression method has been 
found to outperform delta method approaches (Lynch et  al., 2017; Mitchell, 2003). This 
approach yields a regression coefficient for each country that describes its sensitivity to 
changes in GMST; coefficients range from 0.6 to 0.7 °C in the tropics, indicating slower 
warming than the global mean, to > 1.5 °C in the poles, indicating faster warming than the 
global mean and consistent with the classic “Arctic amplification” pattern (Fig. 1b, inset). 
We perform this regression over the model-simulated 1960–2014 period to maintain con-
sistency in time periods with the rest of the analysis.

We then predict the time evolution of country-level temperatures in each FaIR realiza-
tion using the FaIR GMST values and the above coefficients, in both the historical and 
leave-one-out simulations (Fig. 1c). Note that the predicted time series do not contain real-
istic interannual variability; in the next section, we show how we reference these predicted 
time series to observed temperatures to impute realistic variability to the counterfactual 
time series.

3.3  Attribution of climate damages to each country

The final step in our analysis is to extend these reconstructed country-level temperature 
changes into income changes. Here we apply existing methods for empirically estimating 
the effect of temperature changes on economic growth rates. Our main analysis uses the 
global nonlinear approach developed by Burke et  al. (2015), though we also test several 
alternative functional forms (Supplementary Information). We apply the regression speci-
fication of Burke et al. (2015) to our data, rather than relying on their published parameter 
estimates, so that each step of our analysis uses the same data and spatiotemporal scale and 
so that we can easily propagate uncertainty through our analysis. Specifically, we estimate 
the following model with ordinary least squares:
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In Eq. 1, g denotes GDPpc growth, T denotes population-weighted country-mean annual 
mean temperature, and P denotes population-weighted country-mean precipitation (annual 
mean of monthly total rainfall). The country fixed effect γ controls for time-invariant 
country-specific factors such as geography and the year fixed effect μ controls for common 
global shocks. θ denotes country-specific linear and quadratic time trends, which account 
for secular trends in output due to factors such as technological change. To sample uncer-
tainty in the β parameters, we use 250 bootstrap iterations to re-estimate the parameters 
after resampling with replacement by country, which accounts for autocorrelation in errors 
within each country (Burke et al., 2018). Our results may differ from the exact parameter 
values found in Burke et  al. (2015) due to different data and a slightly longer period of 
analysis, but the quadratic relationship between temperature and growth we find is very 
similar to previous estimates (Fig. 1c).

To calculate the marginal effect of an additional degree in the annual mean temperature 
(Fig. 1c, inset), we differentiate Eq. 1 with respect to temperature.

We use this temperature-growth relationship to compare observed growth in each coun-
try with the counterfactual growth that would have occurred without each other country’s 
emissions. ∆Thist denotes the historical temperature change from FaIR and ∆Thist−a denotes 
the temperature change induced by the leave-one-out simulations for country a, with dis-
tinct values for each GCM, FaIR realization, country, and year.

For each country, GCM, and FaIR realization, we construct two counterfactual tempera-
ture time series:

Here, T refers to observed temperatures, δThist refers to temperatures that would have 
occurred without any anthropogenic climate change, and δTa refers to temperatures that 
would have occurred without country a’s emissions. Supplementary Fig. 3 provides a sche-
matic of this calculation. These counterfactual temperatures are referenced to the observed 
time series to: (1) impute realistic interannual variability to these smooth counterfactual 
time series; and (2) bias-correct the model output by using differences rather than absolute 
temperatures.

To calculate the resulting economic damage for each country, year, FaIR realization, 
GCM, and damage function bootstrap, we first calculate the effect of temperature change 
on economic growth ∆g using the parameters β1 and β2, where ∆g is positive when coun-
tries would have grown faster without climate change:

Calculating the change in growth this way subtracts out the non-climate determinants 
of growth and isolates the change associated with temperature. This difference in growth is 
then applied to the beginning of the observed GDPpc time series and integrated to calculate 
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a counterfactual GDPpc time series  (cGDPhist) for each country, model, FaIR realization, 
and damage function bootstrap:

Economic damage D is calculated as the difference between a country’s actual GDPpc 
time series and this counterfactual time series. GDPpc values are multiplied by population 
to convert to absolute GDP where appropriate.

We first perform the above calculation using the historical counterfactual time series 
δThist and the observed time series T, yielding total historical damage Dhist. We then com-
pute the leave-one-out damage value Dhist−a, which refers to the damage done by all emis-
sions other than those of country a, by repeating the counterfactual growth and GDP cal-
culation using δThist and δTa (Supplementary Fig. 3). The economic damage attributable to 
country a  (Da) for each country, year, GCM, FaIR realization, and damage function boot-
strap is the difference between these damage values:

Note that Da can take on both negative and positive values, representing economic dam-
ages and benefits resulting from country a’s emissions, respectively. Once we determine 
total dollar effects in individual nations, we aggregate them to total global income changes; 
where appropriate, we show cumulative attributable damages, which refer to the sum over 
time of attributable income changes.

One key caveat in our work relates to the emission of anthropogenic aerosols, which 
have a cooling effect. Based on analysis presented in detail in the Supplementary Informa-
tion, the varied treatment of aerosols across models does not drive model differences in 
attributable damages (Supplementary Fig. 4).

3.4  Statistical tests of significant national contributions to damages

To determine whether attributable damage for country a is statistically significant, we com-
pare the distributions of damage with (Dhist) and without (Dhist−a) the emissions of coun-
try a. For each country and year, we use a Kolmogorov–Smirnov (K-S) test to determine 
whether these two distributions are statistically distinguishable (Fig. 1d). P-values less than 
0.05 are considered significant, indicating that the “with a” and “without a” distributions 
are not likely drawn from the same underlying distribution. When aggregating total attrib-
utable damages, we only aggregate from countries and years that pass this significance test.

We use a K-S test both because it is nonparametric and because it incorporates both the 
location and shape of the damage distributions, allowing us to leverage our uncertainty 
quantification analysis. However, repeating our analysis using a Student’s t-test yields simi-
lar results, so our results are not sensitive to this choice (Supplementary Fig. 5).

3.5  Uncertainty partitioning

Our analysis yields an array Da, which refers to the cumulative effect of country a’s emis-
sions on country c, with uncertainty from the FaIR carbon cycle parameters, the global-
to-local pattern scaling, and the empirical temperature-growth parameters. Each type of 
uncertainty is calculated as the standard deviation of Da across that dimension and the 
mean of all other dimensions, for example, the standard deviation of Da across all FaIR 
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+
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∗
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carbon cycle parameters and the mean across the pattern scaling coefficients and tempera-
ture-growth parameters. We split out CMIP6 and CESM1-LE in this calculation to repre-
sent global-to-local pattern scaling uncertainty from model structure and internal variabil-
ity, respectively.

We then follow previous uncertainty partitioning work by calculating additive 95% 
uncertainty ranges around the mean (Hawkins & Sutton, 2009; Lehner et al., 2020). The 
component of the 95% range due to carbon cycle uncertainty R, for example, is calculated 
as:

where F is calculated as:

Here B denotes temperature-growth parameter uncertainty (i.e., the standard deviation 
of the damage estimates across the temperature-growth parameters with the other dimen-
sions held at their mean values), R denotes FaIR carbon cycle uncertainty, MS denotes 
uncertainty in the pattern scaling from model structure, and IV denotes uncertainty in 
the pattern scaling from internal variability. The sum of all four sources of uncertainty 
is shown as the range of the bars in Fig. 2b, c, with the components of total uncertainty 
colored by type.

4  Results

The spatial pattern of economic damages from warming attributable to U.S. emissions is 
shown in Fig. 2. Income changes are positive in the high latitudes, mild in the midlatitudes, 
and negative in the tropics (Fig. 2a), consistent with each country’s placement relative to 
the optimum temperature for growth (Fig.  1c). Losses are concentrated around 1–2% of 
GDPpc across nations in South America, Africa, and South and Southeast Asia, where 
temperature shocks may damage economic factors such as labor productivity (Dunne et al., 
2013) and agricultural yields (Schlenker & Roberts, 2009). On the other hand, gains exceed 
3–4% of GDPpc in Canada, Russia, and Scandinavia; cold baseline temperatures mean that 
warming makes economic output easier in these countries.

Our integrated framework allows us to quantify not just the magnitude of losses 
attributable to individual countries’ emissions, but also the various uncertainties in these 
estimates (Methods), which has not been possible in studies that  only address part of 
the causal chain from emissions to impact. Our uncertainty decomposition reveals sig-
nificant roles for the responses of the global carbon cycle and climate to emissions, the 
model response to global forcing as represented by CMIP6 (“GCM structure”), internal 
climate variability in the response to global forcing as represented by the CESM1-LE 
(“internal var.”) and the empirical temperature-growth parameters. In the five most-
damaged countries, most of the uncertainty comes from GCM structure and internal 
variability (Fig. 2b). Variation in damages is therefore highly sensitive to uncertainty in 
the local warming that is consistent with any one emissions trajectory. Internal variabil-
ity alone can play a significant role in pattern scaling uncertainty (Giorgi, 2008); this 
source of uncertainty has been highlighted as crucial for evaluating policy success and 

(8)±
1.96 ∗ R

F

(9)F =
R + B +MS + IV

√

R2 + B2 +MS2 + IV2
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Fig. 2  U.S.-attributable climate damages. (a) Ensemble mean GDPpc changes in each country attributable 
to U.S. emissions, over 1990–2014 with territorial emissions accounting and a short-run (contemporane-
ous) damage function. Missing data (white countries) denotes countries without continuous GDPpc data 
from 1990 to 2014. b, c U.S.-attributable damages in the five countries with the greatest GDPpc percent 
decreases (b) and percent increases (c). The black lines show the mean, the boxes denote the 95% ensemble 
range, and the colored portions denote the additive fraction of each 95% range due to each  source of uncer-
tainty (Methods). Note the different y-axes in b and c
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failure (Mankin et al., 2020). However, despite these uncertainties, the confidence inter-
vals on the U.S. effect on these highly damaged countries do not include zero, indicating 
high confidence that U.S. emissions have caused harm (Fig. 2b). Uncertainty grows at 
higher latitudes, with major contributions from all four sources, especially GCM struc-
tural uncertainty (Fig. 2c).

Our results contrast with uncertainty decompositions for the economic costs of over-
all global warming, where uncertainty in the temperature-growth regression is largest 
(Burke et al., 2018). These previous analyses did not explicitly consider internal climate 
variability, which we find to be a major contributor to uncertainty in attributable dam-
ages. Our results may also differ because we consider uncertainty in country-level damages 
attributable to other countries, rather than uncertainty in total global losses. Uncertainty 
in total losses is dominated by the temperature-growth regression in part because many 
high-income countries are near the temperature optimum, so small changes in the optimum 
can flip the sign of the effect of climate change in these countries (Burke et  al., 2018). 
However, for tropical countries who lose out in all temperature-growth parameter samples 
(Fig. 2b), uncertainty in the propagation of global forcing to local climate can dominate. 
A country-level uncertainty decomposition is important because climate liability is often 
addressed through the lens of local decision-makers seeking redress for a particularized 
harm (Burger et  al., 2020), and our results demonstrate that decision-makers in tropical 
countries seeking this redress should focus on reducing physical climate uncertainty rather 
than economic uncertainty, for example.

One source of uncertainty we do not consider is uncertainty in emissions inventories, 
which is poorly constrained and an area of active research (Fowlie & Reguant, 2018; Hoe-
sly et al., 2018; Höhne et al., 2011; Karstensen et al., 2015). However, emissions uncer-
tainty is largest further back in time and in countries whose emissions are primarily 
LULCC-driven (Höhne et al., 2011), meaning that damages caused by the largest emitters 
in recent years are likely not subject to substantial emissions uncertainty (Karstensen et al., 
2015). Moreover, our use of the official CMIP emissions inventory positions an appropriate 
analysis using data accepted by the World Climate Research Programme in support of the 
UNFCCC, even if that data is provisional and subject to uncertainty.

Performing this same damage attribution exercise for every emitting country and aggre-
gating these country-level damages to global sums yields the cumulative global damages 
and benefits caused by the emissions of each nation (Methods, Fig. 3). We show losses and 
benefits attributable to each country separately. The reason for this presentation choice is 
simply that adding the damages and benefits attributable to any one country to calculate net 
damages would assume that the benefits accruing in one place from that country’s emis-
sions cancel the losses suffered in another from those same emissions, which is not the 
case. Claims for climate liability require concrete and particularized injuries suffered by 
specific plaintiffs (Burger et al., 2020), so assessing damages and benefits independently is 
essential.

Global income changes attributable to the U.S. and China’s emissions over 1990–2014 
each exceed US$1.8 trillion in both losses and benefits; losses and benefits induced by 
Russia, India, and Brazil each individually exceed US$500 billion (Fig. 3a, b). The US$6 
trillion in cumulative losses attributable to those five countries alone is comparable both 
to some 11% of annual world GDP and to the economic losses associated with warming 
the planet to 2 °C rather than 1.5 °C (Burke et al., 2018). Large emitters make dispropor-
tionate contributions to climate damages; the top 10 most damaging countries are together 
responsible for more than 67% of losses and 70% of benefits (Supplementary Fig. 6). The 
U.S. contributes the most, responsible for 16.5% of losses and 18% of benefits, followed by 
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China, responsible for 15.8% of losses and 16.8% of benefits; every other country individu-
ally contributes less than 10%.

The compounding uncertainties in each step of the analysis—from emissions to GHG 
concentrations, from GHG concentrations to temperature changes, and from temperature 
changes to economic damages—imply that country-level attributable damages can be 
highly uncertain. To address this, our analysis incorporates a significance test to ensure 
that we only consider statistically significant damages (Methods). Figure  3 reflects this 
significance test by only aggregating and showing statistically significant damages. The 
compounding uncertainties involved mean that many of the smallest emitters do not cause 
statistically detectable effects (gray countries in Fig. 3). Large emitters, on the other hand 
(the 32% of countries with data in Fig. 3), tend to have damage signals substantial enough 
to be significant when considered against all sources of uncertainty. Our incorporation of 
a significance test also means that small differences in emissions can lead to major differ-
ences in attributable damages. For example, Pakistan and Bolivia have similar  CO2 emis-
sions, with Pakistan emitting an average of 35 MtC  year−1 of  CO2 over 1990–2014 and 
Bolivia emitting an average of 32 MtC  year−1. But that slight difference means that while 
Pakistan can be tied to $130B in statistically significant losses, Bolivia cannot be tied to 
any. So, while the result that heavy emitters have caused significant attributable damages 
may seem obvious, it is not possible to perform a quantitative attribution of precisely how 
much damage and to whom, nor how confident we can be in such estimates, absent an inte-
grated framework that propagates uncertainty from each step in the analysis.

Fig. 3  Global attributable climate damages and benefits. (a) Cumulative income losses attributable to 
each country over 1990–2014, using territorial emissions accounting and a short-run (contemporaneous) 
damage function. (b) Cumulative income gains attributable to each country using the same accounting 
choices as in (a). (c, d) Changes in each country’s attributable losses (c) and gains (d) over 1990–2014 
when the accounting shifts from territorial emissions to consumption-based emissions, as countries that 
import (export) carbon-intensive goods and services cause more (less) damages and benefits. Changes are 
calculated relative to (a) and (b); that is, panel (c) shows the change in attributable damages when using 
consumption-based accounting relative to the attributable damages shown in (a). Positive values mean that 
consumption-based accounting results in greater attributable damages than territorial accounting. (e, f) 
Changes in each country’s attributable losses (e) and gains (f) when using territorial emissions accounting 
and an earlier start date of 1960 rather than 1990 as in (a)–(d). In all maps, only countries with statistically 
significant damages and/or benefits (Methods) are filled. Countries with statistically insignificant damages 
and/or benefits are shown in gray
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Our main analysis (Fig.  3a, b) uses territorial emissions accounting from 1990 to 
2014, but other accounting choices are equally valid (Skeie et  al., 2017). Consumption-
based accounting incorporates emissions embodied in international trade (Davis & Cal-
deira, 2010) and shifts the spatial pattern of attributable damages, in particular diminish-
ing the income changes attributable to countries in the Eastern Hemisphere (Fig. 3c, d). 
Under consumption-based accounting, attributable damages increase by 1.5% for the U.S., 
increase by 10–20% for some European countries, and decrease by 15% for Russia and 
9% for China (Fig. 3c), expanding the gap in responsibility between the U.S. and all other 
countries (Supplementary Fig. 6).

Additionally, because of nonlinearities in the responses of the climate to emissions and 
of the economy to the climate, the timing of emissions changes their economic effects 
(Höhne & Blok, 2005). Emissions released early in the twentieth century, for example, may 
have more severe effects because of the longer time period over which the growth effects of 
such emissions accumulate; at the same time, carbon sinks are stronger at lower emissions 
levels and the growth effects of warming are milder when baseline temperatures are cooler, 
so the opposite could be true. To disentangle these effects, we repeat our analysis with a 
start date of 1960 rather than 1990 (Fig. 3e, f). Such a shift results in larger effects attrib-
uted to all countries due to a longer period of accumulation for both GHGs and the growth 
effects of warming. However, the increase is not globally uniform. Developing countries’ 
attributable damages and benefits only increase modestly, while many countries in Europe 
experience > 400% increases, given their large shares of pre-1990 emissions. The sensitiv-
ity of attributable damages to the accounting period is crucial to how these results should 
be interpreted: damages and thus potential liabilities depend on when emissions accounting 
begins and on what emissions are considered. These choices are ultimately political, but 
our analysis provides a quantitative grounding to inform these political choices.

Our main analysis quantifies parametric uncertainty in the temperature-growth rela-
tionship, but there is also structural uncertainty in the functional form of that relationship. 
We test two alternative formulations: one alternative functional form which examines the 
lagged effects of temperature shocks to determine whether those shocks are transient or 
persistent (Supplementary Figs.  7–10) and one alternative functional form which allows 
the responses of high- and low-income countries to differ (Supplementary Figs. 11 and 12). 
Including lagged responses increases the fraction of uncertainty attributable to the damage 
function, but the magnitude of damages and their statistical significance are similar to our 
main analysis (Supplementary Material). Differentiating the responses of high- and low-
income countries increases both the damages and benefits attributable to major emitters 
(Supplementary Material). These analyses demonstrate that our results are generally robust 
to uncertainty in the functional form of the temperature-growth relationship.

The spatial pattern of attributable damages (e.g., Fig. 2a) has clear distributional impli-
cations. Countries that lose income are warmer and poorer than the global average, gener-
ally located in the tropics. Countries that gain income are cooler and wealthier than the 
global average, generally located in the midlatitudes. Global warming to date has ampli-
fied, and will continue to amplify, this extant pattern of global economic inequality (Dif-
fenbaugh & Burke, 2019).

Our results provide an additional dimension to this globally unequal pattern: The cool, 
relatively wealthy countries that have gained from anthropogenic warming are also those 
that (1) have emitted the most and (2) caused the most damage to other countries from 
their emissions (Fig. 4). Nearly all the high-emitting nations in North America and Eurasia 
are in the top two GDP per capita income quintiles over 1990–2014, though China, India, 
and Indonesia are exceptions (Fig. 4, inset map). These top several income quintiles have 
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caused income losses in the poorest two quintiles, while they have caused income gains 
for themselves that exceed those losses in magnitude (Fig. 4). On the other hand, countries 
in the lowest income quintile, primarily in Africa and central and south Asia, have caused 
nearly zero effects on other countries while suffering the greatest disadvantages from the 
emissions of larger economies. While uncertainty is large for the gains experienced by 
higher income quintiles (see also Fig. 2c), uncertainty is relatively low for damages in the 
bottom two quintiles. As such, the distributional picture of culpability and equity in climate 
damages is evident, despite the myriad complexities involved in linking individual nations’ 
emissions to climate impacts.

The results shown in Fig. 4 use territorial emissions accounting over 1990–2014 as in 
our baseline analysis, but many high-income, high-emitting countries have also imported 
additional emissions through their demand for products from the developing world (Davis 
& Caldeira, 2010). Shifting to consumption-based emissions accounting would therefore 
amplify the distributional picture illustrated in Fig. 4 (primarily in Europe; cf. Figure 4, 
Fig. 3c, d), as would shifting to an earlier accounting period (Fig. 3e, f).

These results are consistent with previous work that shows increases in global inequality 
from historical warming (Diffenbaugh & Burke, 2019). However, our findings emphasize 
that the culpability for warming rests primarily with a handful of major emitters, and that 
this warming has resulted in the emitters’ enrichment at the expense of the poorest people 
in the world: we quantify those costs to individual countries and who precisely is responsi-
ble for them. Our work shows that anthropogenic warming constitutes a substantial interna-
tional wealth transfer from the poor to the wealthy.

5  Discussion

Our analysis has shown that GHG emissions from high-emitting countries have caused 
substantial economic losses in low-income, tropical parts of the world and economic gains 
in high-income, midlatitude regions. Critically, these economic changes are attributable to 
the largest emitters despite the substantial uncertainties at each step in the causal chain 

Fig. 4  Income distribution of 
damages caused and experienced. 
Bar heights show the average 
GDPpc change experienced 
by countries in each income 
quintile that are attributable 
to the average emitter in each 
income quintile (colors). Error 
bars show + / − one standard 
deviation of the mean across the 
distribution of pattern scaling 
coefficients, FaIR realizations, 
and damage function parameters 
(Methods). Inset map shows 
each country’s income quintile, 
calculated using 1990–2014 aver-
age GDPpc
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from emissions to impact. Our results are robust despite the wide range of carbon cycle 
parameters and climate sensitivities, global-to-local forcing strengths, and temperature-
growth specifications we test.

These results have two key implications. Firstly, they illustrate that physical climate 
uncertainty may constitute the dominant source of uncertainty in losses in tropical coun-
tries that are attributable to major emitters. While uncertainty in the relationship between 
the climate and economy is the dominant uncertainty in global losses from warming 
(Burke et al., 2018), our results demonstrate that this does not hold at the country level. 
In the low-income tropical countries that are most vulnerable to warming, internal climate 
variability and differences in model structure can produce a wide range in damages attrib-
utable to major emitters like the U.S. Scientific efforts to narrow uncertainty in regional 
climate change may therefore pay large dividends for countries seeking legal recourse for 
climate damages.

Secondly, our results show that the actions of specific emitters can be tied to the down-
stream monetary implications of climate change. Emerging discussions about climate lia-
bility have been limited to date by a lack of scientific evidence supporting causal linkages 
between individual countries’ emissions and the consequent local impacts (Burger et al., 
2020; Stuart-Smith et al., 2021). Our framework shows that such linkages can be quantified 
using state-of-the-art climate models and empirical approaches and that we can process-
trace exactly who has caused economic losses from their emissions, and how much. While 
previous studies have illustrated the economic harms of global warming, our work shows 
that these harms can be assigned to individual emitters in a way that rigorously accounts 
for the compounding uncertainties at each step of the causal chain from emissions to local 
impact. Finally, it is worth noting that our approach can be generalized to other actors, such 
as individual firms (Ekwurzel et al., 2017; Heede, 2014; Licker et al., 2019), or to other 
harms, such as the economic losses suffered by farmers due to extreme heat (Diffenbaugh 
et al., 2021). These results therefore contribute to resolving a key barrier to climate liability 
efforts and advance these critical emerging discussions.

Supplementary Information The online version contains supplementary material available at https:// doi. 
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Acknowledgements We thank R. Houghton for sharing country-level LULCC emissions data, N.S. Diffen-
baugh and F. Moore for helpful discussions, and Dartmouth’s Research Computing and the Discovery Clus-
ter. We thank the CESM1 Large Ensemble Community Project for developing and hosting CESM1-LE, and 
we acknowledge the World Climate Research Programme, which, through its Working Group on Coupled 
Modeling, coordinated and promoted CMIP6.

Author contribution Both authors conceived the study and designed the analysis. C.W.C. performed the 
analysis. Both authors interpreted the results and wrote the manuscript.

Funding This work was supported by National Science Foundation Graduate Research Fellowship 
#1840344 to C.W.C. and grants from Dartmouth’s Neukom Computational Institute, the Wright Center for 
the Study of Computation and Just Communities, and the Nelson A. Rockefeller Center to J.S.M.

Data availability All data and code that support the findings of this study are available at github.com/
ccallahan45/CallahanMankin_NatlAttribution_2022.

Declarations 

Ethical approval Not applicable.

Consent to participate Not applicable.

https://doi.org/10.1007/s10584-022-03387-y
https://doi.org/10.1007/s10584-022-03387-y


Climatic Change (2022) 172: 40 

1 3

Page 17 of 19 40

Consent to publish Not applicable.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Allen M (2003) Liability for climate change. Nature 421(6926):891–892
Bank TW (2016). World Development Indicators 2016
Beusch L, Gudmundsson L, Seneviratne SI (2020) Emulating Earth system model temperatures with MES-

MER: from global mean temperature trajectories to grid-point-level realizations on land. Earth Syst 
Dynamics 11(1):139–159

Beusch L, Nauels A, Gudmundsson L, Gütschow J, Schleussner C-F, Seneviratne SI (2022) Responsibility 
of major emitters for country-level warming and extreme hot years. Commun Earth Environ 3(1):1–7. 
https:// doi. org/ 10. 1038/ s43247- 021- 00320-6

Burger M, Wentz J, Horton R (2020) The law and science of climate change attribution. Colum J Envtl l 
45:57

Burke M., Davis WM, Diffenbaugh NS (2018). Large potential reduction in economic damages under UN 
mitigation targets. Nature, 557(549–553).

Burke M, Hsiang SM, Miguel E (2015) Global non-linear effect of temperature on economic production. 
Nature 527:235–239

Burke, M., & Tanutama, V. (2019). Climatic constraints on aggregate economic output. National Bureau of 
Economic Research Working Paper.

Center for International Earth Science Information Network, C. U., CIESIN. (2016). Gridded Population of 
the World, Version 4 (GPWv4): Population Count.

Ciais P, Gasser T, Paris J, Caldeira K, Raupach M, Canadell J, Patwardhan A, Friedlingstein P, Piao S, 
Gitz V (2013) Attributing the increase in atmospheric CO2 to emitters and absorbers. Nat Clim Chang 
3(10):926–930

Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rut-
ledge G, Bessemoulin P et  al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 
137(654):1–28

Davis SJ, Caldeira K (2010) Consumption-based accounting of CO2 emissions. Proc Natl Acad Sci 
107(12):5687–5692

Dell M, Jones BF, Olken BA (2012) Temperature shocks and economic growth: evidence from the last half 
century. Am Econ J Macroecon 4(3):66–95

den Elzen M, Fuglestvedt J, Höhne N, Trudinger C, Lowe J, Matthews B, Romstad B, de Campos CP, 
Andronova N (2005) Analysing countries’ contribution to climate change: scientific and policy-related 
choices. Environ Sci Policy 8(6):614–636

Den Elzen MG, Olivier JG, Höhne N, Janssens-Maenhout G (2013) Countries’ contributions to climate 
change: effect of accounting for all greenhouse gases, recent trends, basic needs and technological pro-
gress. Clim Change 121(2):397–412

Den Elzen M, Schaeffer M (2002) Responsibility for past and future global warming: uncertainties in attrib-
uting anthropogenic climate change. Clim Change 54(1–2):29–73

Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future 
North American climate. Nat Clim Chang 2(11):775–779

Deser C, Phillips AS, Simpson IR, Rosenbloom N, Coleman D, Lehner F, Pendergrass AG, DiNezio P, Ste-
venson S (2020) Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: 
a new CESM1 large ensemble community resource. J Clim 33(18):7835–7858

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s43247-021-00320-6


 Climatic Change (2022) 172: 40

1 3

40 Page 18 of 19

Diffenbaugh NS, Burke M (2019) Global warming has increased global economic inequality. Proc Natl 
Acad Sci 116(20):9808–9813

Diffenbaugh NS, Davenport FV, Burke M (2021) Historical warming has increased US crop insurance 
losses. Environ Res Lett 16(8):084025. https:// doi. org/ 10. 1088/ 1748- 9326/ ac1223

Dunne JP, Stouffer RJ, John JG (2013) Reductions in labour capacity from heat stress under climate warm-
ing. Nat Clim Chang 3(6):563–566

Ekwurzel B, Boneham J, Dalton MW, Heede R, Mera RJ, Allen MR, Frumhoff PC (2017) The rise in global 
atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers. 
Clim Change 144(4):579–590. https:// doi. org/ 10. 1007/ s10584- 017- 1978-0

Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the 
Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. 
Geoscientific Model Development 9(5):1937–1958

Fowlie M, Reguant M (2018) Challenges in the measurement of leakage risk. AEA Papers and Proceed-
ings 108:124–129. https:// doi. org/ 10. 1257/ pandp. 20181 087

Gillett N, Shiogama H, Funke B, Hegerl G, Knutti R, Matthes K, Santer B, Stone D, Tebaldi C (2016) 
The Detection and Attribution Model Intercomparison Project (DAMIP v1. 0) contribution to 
CMIP6. Geoscientific Model Development 9:3685–3697

Giorgi F (2008) A simple equation for regional climate change and associated uncertainty. J Clim 
21(7):1589–1604. https:// doi. org/ 10. 1175/ 2007J CLI17 63.1

Gottlieb AR., Mankin JS. (2021). Observing, measuring, and assessing the consequences of snow 
drought. Bullet Am Meteorol Soc, 1(aop). https:// doi. org/ 10. 1175/ BAMS-D- 20- 0243.1

Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull 
Am Meteor Soc 90(8):1095–1108

Heede R (2014) Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement 
producers, 1854–2010. Clim Change 122(1):229–241. https:// doi. org/ 10. 1007/ s10584- 013- 0986-y

Hoesly RM, Smith SJ, Feng L, Klimont Z, Janssens-Maenhout G, Pitkanen T, Seibert JJ, Vu L, Andres 
RJ, Bolt RM et  al (2018) Historical (1750–2014) anthropogenic emissions of reactive gases and 
aerosols from the Community Emission Data System (CEDS). Geosci Model Develop 11:369–408

Höhne N, Blok K (2005) Calculating historical contributions to climate change–discussing the ‘Brazil-
ian Proposal.’ Clim Change 71(1–2):141–173

Höhne N, Blum H, Fuglestvedt J, Skeie RB, Kurosawa A, Hu G, Lowe J, Gohar L, Matthews B, De 
Salles ACN et  al (2011) Contributions of individual countries’ emissions to climate change and 
their uncertainty. Clim Change 106(3):359–391

Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover 
change 1850–2015. Glob Biogeochem Cycles 31(3):456–472

Kalkuhl M, Wenz L (2020) The impact of climate conditions on economic production Evidence from a 
global panel of regions. J Environ Econ Manage 103:102360. https:// doi. org/ 10. 1016/j. jeem. 2020. 
102360

Karstensen J., Peters G., Andrew R. (2015). Uncertainty in temperature response of current consump-
tion-based emissions estimates. Earth Syst Dynamics, 6(1).

Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster JM, Bates S, Danabasoglu G, 
Edwards J et  al (2015) The Community Earth System Model (CESM) large ensemble project: a 
community resource for studying climate change in the presence of internal climate variability. Bull 
Am Meteor Soc 96(8):1333–1349

Lehner F, Deser C, Maher N, Marotzke J, Fischer EM, Brunner L, Knutti R, Hawkins E (2020) Partition-
ing climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst Dynam-
ics 11(2):491–508

Lewis SC, Perkins-Kirkpatrick SE, Althor G, King AD, Kemp L (2019). Assessing contributions of 
major emitters’ Paris-era decisions to future temperature extremes. Geophys Res Lett

Li B, Gasser T, Ciais P, Piao S, Tao S, Balkanski Y, Hauglustaine D, Boisier J-P, Chen Z, Huang M et al 
(2016) The contribution of China’s emissions to global climate forcing. Nature 531(7594):357–361

Licker R, Ekwurzel B, Doney SC, Cooley SR, Lima ID, Heede R, Frumhoff PC (2019) Attributing ocean 
acidification to major carbon producers. Environ Res Lett 14(12):124060. https:// doi. org/ 10. 1088/ 
1748- 9326/ ab5abc

Lynch C, Hartin C, Bond-Lamberty B, Kravitz B (2017) An open-access CMIP5 pattern library for tem-
perature and precipitation: description and methodology. Earth Syst Sci Data 9(1):281–292. https:// 
doi. org/ 10. 5194/ essd-9- 281- 2017

Mankin JS, Lehner F, Coats S, McKinnon KA (2020) The value of initial condition large ensembles to 
robust adaptation decision-making. Earth’s Future 8(10):e2012EF001610

https://doi.org/10.1088/1748-9326/ac1223
https://doi.org/10.1007/s10584-017-1978-0
https://doi.org/10.1257/pandp.20181087
https://doi.org/10.1175/2007JCLI1763.1
https://doi.org/10.1175/BAMS-D-20-0243.1
https://doi.org/10.1007/s10584-013-0986-y
https://doi.org/10.1016/j.jeem.2020.102360
https://doi.org/10.1016/j.jeem.2020.102360
https://doi.org/10.1088/1748-9326/ab5abc
https://doi.org/10.1088/1748-9326/ab5abc
https://doi.org/10.5194/essd-9-281-2017
https://doi.org/10.5194/essd-9-281-2017


Climatic Change (2022) 172: 40 

1 3

Page 19 of 19 40

Marjanac S, Patton L (2018) Extreme weather event attribution science and climate change litigation: an 
essential step in the causal chain? J Energy Nat Res Law 36(3):265–298

Matthews HD (2016) Quantifying historical carbon and climate debts among nations. Nat Clim Chang 
6(1):60–64

Matthews HD, Graham TL, Keverian S, Lamontagne C, Seto D, Smith TJ (2014) National contributions 
to observed global warming. Environ Res Lett 9(1):014010

Millar RJ, Nicholls ZR, Friedlingstein P, Allen MR (2017). A modified impulse-response representation 
of the global near-surface air temperature and atmospheric concentration response to carbon diox-
ide emissions. Atmos Chem Phys, 17.

Mitchell TD (2003) Pattern scaling: an examination of the accuracy of the technique for describing future 
climates. Clim Change 60(3):217–242. https:// doi. org/ 10. 1023/A: 10260 35305 597

Moore FC, Diaz DB (2015) Temperature impacts on economic growth warrant stringent mitigation policy. 
Nat Clim Chang 5(2):127

Murphy DM, Ravishankara AR (2018) Trends and patterns in the contributions to cumulative radiative forc-
ing from different regions of the world. Proc Natl Acad Sci 115(52):13192–13197. https:// doi. org/ 10. 
1073/ pnas. 18139 51115

Okereke C, Coventry P (2016) Climate justice and the international regime: before, during, and after Paris. 
Wiley Interdiscip Rev: Clim Change 7(6):834–851

Peters GP, Davis SJ, Andrew R (2012) A synthesis of carbon in international trade. Biogeosciences 
9(8):3247–3276

Prather MJ, Penner JE, Fuglestvedt JS, Kurosawa A, Lowe JA, Höhne N, Jain K, Andronova N, Pinguelli L, 
Pires de Campos C., & others. (2009). Tracking uncertainties in the causal chain from human activities 
to climate. Geophys Res Lett 36(5).

Rohde RA, Hausfather Z (2020). The Berkeley Earth land/ocean temperature record. Earth Syst Sci Data 
Discuss 1–16.

Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB. (1990). Developing climate scenarios from equi-
librium GCM results. Max Planck Institute for Meteorology.

Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields 
under climate change. Proc Natl Acad Sci 106(37):15594–15598

Schneider U., Becker A., Finger P., Meyer-Christoffer A., Rudolf B., Ziese M. (2011). GPCC full data rea-
nalysis version 6.0 at 0.5: monthly land-surface precipitation from rain-gauges built on GTS-based and 
historic data. GPCC Data Rep., Doi, 10.

Schwalm CR, Glendon S, Duffy PB (2020) RCP85 tracks cumulative CO2 emissions. Proceedings of the 
National Academy of Sciences 117(33):19656–19657. https:// doi. org/ 10. 1073/ pnas. 20071 17117

Seneviratne SI, Donat MG, Pitman AJ, Knutti R, Wilby RL (2016) Allowable CO2 emissions based on 
regional and impact-related climate targets. Nature 529(7587):477–483

Skeie RB, Fuglestvedt J, Berntsen T, Peters GP, Andrew R, Allen M, Kallbekken S (2017) Perspective 
has a strong effect on the calculation of historical contributions to global warming. Environ Res Lett 
12(2):024022

Smith CJ, Forster PM, Allen M, Leach N, Millar RJ, Passerello GA, Regayre LA (2018) FAIR v13: a simple emis-
sions-based impulse response and carbon cycle model. Geoscientific Model Development 11(6):2273–2297

Stuart-Smith RF, Otto FEL, Saad AI, Lisi G, Minnerop P, Lauta KC, van Zwieten K, Wetzer T (2021) Fill-
ing the evidentiary gap in climate litigation. Nat Clim Chang 11(8):651–655. https:// doi. org/ 10. 1038/ 
s41558- 021- 01086-7

Tebaldi C, Arblaster JM (2014) Pattern scaling: its strengths and limitations, and an update on the latest 
model simulations. Clim Change 122(3):459–471. https:// doi. org/ 10. 1007/ s10584- 013- 1032-9

Trudinger C, Enting I (2005) Comparison of formalisms for attributing responsibility for climate change: 
non-linearities in the Brazilian Proposal approach. Clim Change 68(1–2):67–99

Ward D, Mahowald N (2014) Contributions of developed and developing countries to global climate forcing 
and surface temperature change. Environ Res Lett 9(7):074008

Wei T, Dong W, Yuan W, Yan X, Guo Y (2014) Influence of the carbon cycle on the attribution of responsi-
bility for climate change. Chin Sci Bull 59(19):2356–2362

Wei T, Yang S, Moore JC, Shi P, Cui X, Duan Q, Xu B, Dai Y, Yuan W, Wei X et al (2012) Developed and 
developing world responsibilities for historical climate change and CO2 mitigation. Proc Natl Acad Sci 
109(32):12911–12915

Willmott CJ. (2000). Terrestrial air temperature and precipitation: monthly and annual time series (1950–
1996). WWW Url: Http://Climate. Geog. Udel. Edu/∼ Climate/Html_pages/README. Ghcn_ts. Html.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1023/A:1026035305597
https://doi.org/10.1073/pnas.1813951115
https://doi.org/10.1073/pnas.1813951115
https://doi.org/10.1073/pnas.2007117117
https://doi.org/10.1038/s41558-021-01086-7
https://doi.org/10.1038/s41558-021-01086-7
https://doi.org/10.1007/s10584-013-1032-9

	National attribution of historical climate damages
	Abstract
	1 Introduction
	2 Data
	3 Methods
	3.1 National contributions to global temperature change in a simple climate model
	3.2 Propagating national contributions to warming to the country level
	3.3 Attribution of climate damages to each country
	3.4 Statistical tests of significant national contributions to damages
	3.5 Uncertainty partitioning

	4 Results
	5 Discussion
	Acknowledgements 
	References


