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Drawing the Causal Chain: The Detection and Attribution of Climate Change 
by Michael F. Wehner 

 
This module describes the detection of human induced climate and its attribution to causal 
factors. This rigorous body of scientific literature has provided the evidence that human 
activities, principally the burning of coal, oil, and natural gas for energy, have changed climate. 
This module will discuss two broad aspects of detection and attribution science. The first part 
describes the human influence on long-term trends in the climate system. The second part 
describes the human influence on specific extreme weather events and their impacts. 
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I. Introduction 
 
The central issue in both climate science and the law is the attribution of effects to causes. In 
climate science, this is a two-step process. The first step is to detect that the climate has changed 
by demonstrating an observable change in a particular climate measure. The second step is to 
attribute that change to causal factors. Commonly known as D&A, the detection and attribution 
of climate change constitute an exercise in causality. 
 
Complex phenomena such as climate change have many potential causal influences. Of principal 
concern today is the increase in atmospheric carbon dioxide (CO2) resulting from the burning of 
fossil fuels for energy. While this powerful greenhouse gas makes up a small fraction of the 
atmosphere, its concentration has increased substantially since the Industrial Revolution. This 
increased concentration has been accompanied by an unprecedented increase in global 
temperatures and by other climatic changes. D&A analyses attempt to determine whether 
changes in the composition of the atmosphere are linked to observed changes in the climate 
system. 
 
Carbon dioxide is not the only atmospheric pollutant with the potential to alter the climate. 
Methane (CH4) from both natural and anthropogenic sources also acts to trap heat in the 
atmosphere, and its concentration in the atmosphere also has been increasing due to human 
activities. Various combinations of nitrogen and oxygen (known as nitrous oxides, or NOx), as 
well as the chlorofluorocarbons and bromocarbons now banned by the Montreal Protocol, are 
also greenhouse gases with the similar heat-trapping properties. Some D&A studies attempt to 
separately quantify the individual warming effect of these various pollutants, but most studies 
aggregate all greenhouse gases as a “CO2 equivalent”, or the amount of carbon dioxide that 
would be needed to produce the warming of all greenhouse gases combined. 
 
Aerosols are another important atmospheric pollutant. Not to be confused with hair spray, 
aerosols are small atmospheric particles or liquid droplets, either natural or man-made. Some of 
these aerosols, such as sulfate caused by burning high-sulfur coal and oil or by large volcanic 
eruptions, reflect sunlight back to outer space and can have a cooling effect that counteracts the 
effect of increased greenhouse gases.1 Other aerosols, such as the soot or “black carbon” caused 
by forest fires or the burning of wood or dung for energy, can have a warming effect, thus 
exacerbating the effects of increased greenhouse gases.2 Dust blown off the deserts can be 
transported long distances and also can have complex interactions with aspects of the climate 
system.3 
 
In addition to changing the composition of the atmosphere, humans have changed the surface of 
the earth for tens of thousands of years if not longer. Deforestation and subsequent reforestation 
change the amount of light reflected from the earth’s surface back into space, which in turn 

 
1 N. Bellouin et al., Bounding Global Aerosol Radiative Forcing of Climate Change, 58 Reviews of Geophysics 1 
(2019), https://doi.org/10.1029/2019RG000660.  
2 T.C. Bond et al., Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment, 118 JGR 
Atmospheres 5380 (2013), https://doi.org/10.1002/jgrd.50171.  
3 Kevin A. Reed et al., Exploring the Impact of Dust on North Atlantic Hurricanes in a High-Resolution Climate 
Model, 46 Geophysical Rsch. Letters 1105 (2019). 
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affects temperature. Forests tend to be darker than farmland and reflect less sunlight back to 
outer space, warming the earth’s surface, while snow-covered land is white and reflects more 
sunlight back to space than do areas covered with vegetation. Urbanization also affects the 
planet’s reflectivity, also known as albedo. For example, asphalt and dark roofs absorb more 
solar energy than do concrete or light-colored roofs. While the effects of urbanization are usually 
localized, D&A analyses have been used to quantify their consequences for climate change. 
 
Variations in the intensity of sunlight received at the top of the earth’s atmosphere can also cause 
the climate to change. Long-term variations in the Earth’s orbit are known to have caused 
massive swings in climate over long time periods, ranging from very cold ice ages to conditions 
warmer than today’s. However, these orbital changes and their associated climate effects occur 
very slowly compared with the global warming that has occurred in recent decades and are not 
generally part of D&A analyses. 
 
Of more relevance on human timescales is the variability in the Sun’s luminosity. With a period 
of approximately 13 years, these solar variations have been well studied and will be discussed 
later in this module.Add something here to acknowledge ENSO too. 

II. How are D&A Analyses Done? 
 
The causal factors described above are often referred to as external “forcing” factors. While 
these factors can be of both natural and anthropogenic origin, they are described as external 
because they are imposed upon the climate system rather than being an intrinsic part of it. 
Changes in climate due to these causal factors are the effects or “signals” being sought in D&A 
analyses. 
 
However, the climate system also has a complicated internal variability. Some of these modes of 
internal variability are well known. For example, El Niño is part of a periodic redistribution of 
heat in the Pacific Ocean that occurs every few years. This natural variation in Pacific Ocean 
temperatures has far-reaching effects, such as modulating winter temperatures in North Dakota 
and influencing the number of North Atlantic hurricanes. 
 
Other quasi-regular natural oscillations are not so well known to the public. For example, both 
the Atlantic and Pacific oceans undergo regular changes over periods of years to decades that can 
influence temperature and rainfall patterns on land. While some aspects of these natural changes 
within the climate system are not thoroughly understood, enough is known about their 
mechanisms and effects to rule out their being responsible for the warming and associated 
climatic changes observed in recent decades. 
 
Climatic measures such as average global temperature also vary from year to year due to “noise” 
or apparently random variations within the climate system. These variations are much more 
difficult to predict because they are the result of initially small influences that are magnified by 
the mechanisms of the climate system. The total internal variability of the climate system is 
therefore a mixture of known natural oscillations and this unpredictable chaotic noise. 
 
The challenge in a D&A analysis is to extract the external signal of human-produced forcing 
factors from the natural variation of the climate system. This sort of problem arises in other areas 

Michael Wehner
It is discussed in the next paragraph. The distinction between external and internal agents is important. Section 1 is all about external so prefer not to have ENSO here.
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of science and technology, such as in certain electrical engineering applications, and climate 
scientists have adapted techniques from that discipline. 
 
However, unlike electrical engineers or other physical scientists and as was noted in the module 
on How Climate Science Works, climate scientists have only a single experimental planet to 
study. Lacking alternate planets to test a hypothesis, they must rely on climate models to 
determine how external forcing factors are changing the climate. But the basic methodologies 
involved in using climate models are similar to those used in many other areas of science. 
 
As an example, consider the most well-established aspect of the climate system, the global 
average surface temperature. The first step of a D&A analysis is to detect a change in the 
observed record, usually expressed as a trend. Fortunately, extensive observations of air 
temperatures over the land and in the ocean surface go back well into the 19th century. The black 
line in Figure 1 shows these measurements averaged over the entire globe each year from 1850 
to 2020. These temperatures are shown as a difference from the average over the 1850–1900 
period, which is centered around zero. The internal variability of climate is evident by the short-
term ups and down in the black line. Around 1930, the observed global average surface 
temperature begins to increase above the previous average. By the 1980s, a detectable trend or 
change is obvious. 
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Figure 1: The observed global mean surface air temperature (black line) tracks with climate 
models containing human and natural influences (brown line) and not with models that include 
only natural influences (green line). Confidence intervals of the model simulations are shown by 
the shaded regions. Units: oC. Source: IPCC, CLIMATE CHANGE 2021: THE PHYSICAL SCIENCE BASIS, 
SUMMARY FOR POLICYMAKERS (2021) (Figure SPM.1(b)). 
 
 
If a trend has been detected, the next D&A step is the attribution of the observed change to a 
causal factor. To do that, D&A analyses typically compare the observations both with models 
that include a particular set of causal factors and with models that do not include them. The 
variations in simulations that do not include the causal factors reveal how much internal 
variability is present in the system, and this variability can be compared with the variability in 
the observations. The simulations that do include the causal factors then can be compared with 
an observation to determine whether an observed change can be attributed to that factor. 
 
Correspondence between a simulation and an observed change does not necessarily mean that 
the change can be attributed to the causal factor included in the model. A model may not be “fit 
for purpose,” meaning that it does not accurately simulate the system being modeled. 
Determining whether a model is fit for purpose is done through a process called model 
evaluation, which is a well-established science that has been discussed extensively in many 
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reports and papers.4 Model evaluation involves such steps as comparing model outputs, 
contrasting simpler with more complex models, combining models, and quantifying 
uncertainties. This process increases the confidence with which attributions and projections 
based on models can be made. 
 
Figure 1 demonstrates many aspects of this D&A process. The brown line represents the global 
mean surface temperature from climate model simulations with five external forcing agents: 
greenhouse gases, anthropogenic aerosols, anthropogenic ozone, volcanic aerosols, and solar 
variability. The curve is smoother than the observations (black line) because an ensemble of 
different climate models yields results that have been averaged together, which reduces internal 
variability. The range of different model results is shown by the brown-shaded region. 
Agreement of the averaged model simulations with the observed change leads to the conclusion 
that the detected observed change is externally forced and not an internal variation. 
 
Figure 1 also compares the “all forcings” simulations with simulations that include only the 
volcanic and solar variability forcings, as shown in green. These simulations clearly do not 
contain the observed change. Furthermore, when comparing the range of natural simulations 
(shaded green) to the range of “all forcings” simulations (shaded brown), it is clear that the “all 
forcings” signal emerged from the noise of natural variability in the 1990s. Applying formal 
statistical tools to these datasets can quantify these statements in a rigorous manner.5 
 
The conclusions of a D&A study are often made in attribution statements, which are constructed 
not to overstate the link between a cause and the observed effect. From Figure 1, such a 
conservative statement would be “It is very likely that at least half of the observed warming is 
due to human influences.” The italicized “very likely” is a reference to the IPCC calibrated 
language denoting a 95% statistical confidence interval.6 The “at least” part of the statement 
refers to the lower bound of the brown shaded region, which is about half of the observed 
warming (in black). 
 
This very conservative language belies the actual level of confidence in the attribution of global 
warming to greenhouse gases. An equally correct statement is “Our best estimate is that the 
observed warming is due to human influences.” This statement is true because “best estimate” 
means that the central value (i.e., the average of the values predicted by multiple independent 
models) is equal to the observed change. 

III. D&A Analyses Beyond Temperature 
 

 
4 Zeke Hausfather et al., Evaluating the Performance of Past Climate Model Projections, 47 Geophysical Rsch. 
Letters 1 (2020), https://doi.org/10.1029/2019GL085378. 
5 See, e.g., Gabriele C. Hegerl & Gerald R. North, Comparison of Statistically Optimal Approaches to Detecting 
Anthropogenic Climate Change, 10 J. of Climate 1125 (1997), https://doi.org/10.1175/1520-
0442(1997)010%3C1125:COSOAT%3E2.0.CO;2.  
6 IPCC, CLIMATE CHANGE 2021: The Physical Science Basis, SUMMARY FOR POLICYMAKERS (2021), 
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf. 

https://doi.org/10.1175/1520-0442(1997)010%3C1125:COSOAT%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010%3C1125:COSOAT%3E2.0.CO;2
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D&A analyses consider many aspects of the climate system other than global mean temperature, 
including precipitation, ocean temperature, sea ice extent, and sea level. Figure 2 shows aspects 
of climate that have been subjected to D&A analyses. 
 

 
Figure 2: Studies in the peer-reviewed science literature have attributed changes in many aspects 
of climate to human emissions of heat-trapping gases and aerosols. Many natural factors have 
affected climate in the past and continue to do so today, but human activities are the dominant 
contributor to recently observed climate changes7 
 
 
The first challenge in a D&A study is acquiring long-term observational records, which can be 
inadequate even for temperature, much less other quantities of interest. Observational coverage is 
incomplete over the globe and varies with time. Many parts of the southern hemisphere are 
poorly observed, as are the portions of the oceans outside of shipping lanes. Satellites provide 
uniform global coverage, but the earliest satellites with relevant instrumentation were launched 

 
7 John Walsh et al., Appendix 3: Climate Science Supplement, in Climate Change Impacts in the United States: The 
Third National Climate Assessment (2014), https://nca2014.globalchange.gov/report/appendices/climate-science-
supplement. 
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just in 1979. Furthermore, these early satellites’ primary mission was weather prediction, not 
climate monitoring. 
 
Satellites nevertheless offer a good example of opportunities for D&A analyses. For example, 
one use of satellites is to compare temperatures close to the surface (in the troposphere) with 
those in the upper atmosphere. Microwave sounding unit satellites do not measure air 
temperature at different levels above the ground directly, but temperatures at different levels can 
be inferred from a retrieval and calibration algorithm.8 The human influence on these 
temperatures is very clear in D&A analyses. Figure 3 shows, on the left, the vertical profile of air 
temperature aloft over the 1979–99 period. The troposphere, from the ground up to about 200 mb 
of pressure, has clearly been warming while the stratosphere, above about 100 mb of pressure, 
has been cooling both in the observations and in three models.9 More importantly, a series of 
model simulations with external forcing agents individually imposed (Figure 3, right) reveals 
that only greenhouse gases and ozone (panels A and C) can produce a cooling of the 
stratosphere. These studies also demonstrate that solar variations are not responsible for the 
observed climate change, because they would be expected to warm the stratosphere rather than 
cool it as observed (figure 3, right panel E).  
 

Figure 3: Left: Over the 1979–99 period, air temperature averaged over both latitude and 
longitude has increased in the lower atmosphere and has declined in the upper atmosphere. 
Observations are the solid and dashed black lines. Results from climate models are shown as 
colored lines. Right: Simulations of external forcing factors produce different predictions of 
changes in vertical air temperature. Note that changes in solar luminosity (lower left panel) do 

 
8 Benjamin D. Santer et al., Identifying Human Influence on Atmospheric Temperature, 110 PNAS 26 (2013), 
https://www.pnas.org/doi/full/10.1073/pnas.1210514109; Benjamin D. Santer et al., Influence of Satellite Data 
Uncertainties on the Detection of Externally Forced Climate Change, 300 Science 1280 (2003), 
https://doi.org/10.1126/science.1082393.  
9 Benjamin D. Santer et al., How Well Can the Observed Vertical Temperature Chang es Be Reconciled With our 
Understanding of the Causes of These Changes?, in Temperature Trends in the Lower Atmosphere (T.R. Karl et al., 
eds.) (2006). 

https://doi.org/10.1126/science.1082393
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not reproduce the observed vertical changes but that the all forcings simulation (lower right 
panel), which includes human greenhouse gas increases, does. Source: Benjamin D. Santer et al., 
How Well Can the Observed Vertical Temperature Changes Be Reconciled With our 
Understanding of the Causes of These Changes?, in Temperature Trends in the Lower 
Atmosphere (T.R. Karl et al., eds.) (2006). 
 
 
Because of the optical properties of water vapor, it can be remotely observed very accurately 
over the oceans. Although satellite observations of water vapor started only in 1989, the detected 
signal quickly rose above the noise and could be attributed readily to external forcing factors.10 
These studies demonstrated the validity of D&A analyses, as the measured moisture changes 
were shown to be consistent with observed temperatures and could be predicted from well-
established physical laws. 
 
Changes in average precipitation have also been subjects of D&A analyses. As the atmosphere 
warms, when fully saturated it can hold more water vapor, and precipitation might be expected to 
increase. However, the D&A problem for precipitation is complicated as changeds in 
atmospheric circulation can cause precipitation to increase or decrease spatially depending on 
location, and season and natural variability is high.11 Hence, confidence in attribution of 
precipitation changes is lower than it is for temperature.12 In addition, frequent and accurate 
precipitation observations are mostly limited to North America and Europe, which imposes some 
conditions on the published attribution statements13 As discussed later in this module, potential 
changes in extreme temperature and precipitation due to global warming are expected to be more 
robust, and D&A studies are more confident in these areas.14 
 
Climate models require many long computations, and such simulations require substantial human 
and machine resources. Fortunately, climate science has matured to the point where a great deal 
of simulation data from the international climate modeling community is now publicly available. 
(refs) Collections of simulations are one way to evaluate whether models are fit for purpose. 
Other times, more specialized analyses may be required to make this determination. [I would 
leave this statement in but add in John’s observation as well.] 

 
10 Carl A. Mears et al., Relationship Between Temperature and Precipitable Water Changes Over Tropical Oceans, 
34 Geophysical Rsch. Letters 1 (2007), https://doi.org/10.1029/2007GL031936; Benjamin D. Santer er al., 
Idnetification of Human-Induced Changes in Atmospheric Moisture Content, 104 Proc. of the Nat’l Acad. of Sci’s 
15248 (2007), https://www.pnas.org/doi/full/10.1073/pnas.0702872104. 
11 D.R. Easterling et al., Precipitation Change in the United States, Chapter 7 in U.S. GLOBAL CHANGE RES. 
PROGRAM, CLIMATE SCIENCE SPECIAL REPORT: FOURTH NATIONAL CLIMATE ASSESSMENT VOL. 1 (2017). 
12 IPCC, CLIMATE CHANGE 2021: The Physical Science Basis, SUMMARY FOR POLICYMAKERS (2021), 
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf. 
13 Seung-Ki Min et al., Human Contribution to More-intense Precipitation Extremes, 470 Nature 378 (2011), 
https://www.nature.com/articles/nature09763; Xuebin Zhang et al., Attributing Intensification of Precipitation 
Extremes to Human Influence, 40 Geophysical Rsch. Letters 5252 (2013), https://doi.org/10.1002/grl.51010. 
14 Yeon-Hee Kim et al., Attribution of Extreme Temperature Changes During 1951-2010, 46 Climate Dynamics 1769 
(2016), https://doi.org/10.1007/s00382-015-2674-2; Seung-Ki Min et al., Multimodal Detection and Attribution f 
Extreme Temperature Changes, 26 J. of Climate 7430 (2013), https://doi.org/10.1175/JCLI-D-12-00551.1. 

https://doi.org/10.1029/2007GL031936
https://www.nature.com/articles/nature09763
https://doi.org/10.1007/s00382-015-2674-2
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IV. Assessing Confidence in Attribution Statements 
 
Assessing confidence in attribution statements is critically important for decision and policy 
makers. Most attribution statements are framed in the calibrated language developed by the 
Intergovernmental Panel on Climate Change  of an objective “likelihood” and a subjective 
“confidence” (Table 1).15 As noted earlier, the IPCC’s phrasing tends to be conservative because 
of the focus on the lower bounds of statistical confidence intervals. 

 
 
Table 1: The calibrated uncertainty language developed by the IPCC treats both the nature of the 
evidence (left) and the likelihood of outcomes (right). Left: Confidence increases towards the 
top-right corner as suggested by the increasing strength of shading. Generally, evidence is treated 
with greater confidence when multiple independent lines of high-quality evidence are consistent. 
Right: Objective likelihood statements range from virtually certain to exceptionally unlikely. 
Source: MICHAEL D. MASTRANDREA ET AL., INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, GUIDANCE 
NOTE FOR LEAD AUTHORS OF THE IPCC FIFTH ASSESSMENT REPORT ON CONSISTENT TREATMENT OF 
UNCERTAINTIES 3 (2010).   
 
The IPCC has also developed a method for assigning confidence to attribution statements 
regarding long-term changes in climate, as shown in Figure 4.16 This method can be used to 
assess contrasting studies when developing a weighted likelihood of particular events. 
 
 

 
15 Sophie C. Lewis et al., Toward Calibrated Language for Effectively Communicating the Results of Extreme Event 
Attribution Studies, 7 Earth’s Future 1020 (2019), https://doi.org/10.1029/2019EF001273; MICHAEL D. 
MASTRANDREA ET AL., INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, GUIDANCE NOTE FOR LEAD AUTHORS 
OF THE IPCC FIFTH ASSESSMENT REPORT ON CONSISTENT TREATMENT OF UNCERTAINTIES (2010).   
16 Friederike E.L. Otto et al., Toward an Inventory of the Impacts of Human-Induced Climate Change, 101 Bull. Of 
Am. Meteorological Soc’y E1972 (2020), https://doi.org/10.1175/BAMS-D-20-0027.1; Sonia I. Seneviratne et al., 
Weather and Climate Extreme Events in a Changing Climate, Chapter 11 in IPCC, CLIMATE CHANGE 2021: The 
Physical Science Basis (2021). 

https://doi.org/10.1029/2019EF001273
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Figure 4: Confidence (low, medium, or high) in attribution statements can be assessed by 
answering a series of yes-no questions. Source: Friederike E.L. Otto et al., Toward an Inventory 
of the Impacts of Human-Induced Climate Change, 101 Bull. Of Am. Meteorological Soc’y E1972, 
E1975 (2020). 
 
Confidence in an attribution statement is highest when multiple, independent teams arrive at 
similar conclusions using different observational datasets, different climate models, and different 
attribution techniques. This has occurred in only a few cases, in part because the attribution 
community remains small and much D&A work remains to be done. 
 
Early attribution statements often relied on single climate models, and some rather specialized 
attribution efforts still do. But confidence increases with the number of climate models used, and 
the widespread and centralized availability of climate model output data increasingly makes the 
use of multiple models possible. Using multiple observational datasets also increases confidence, 
though many of these datasets are not independent, limiting the increase in confidence. As a 
proxy for multiple observations, some attribution studies use reanalyses products. These datasets 
are produced by specialized weather prediction models that are highly constrained by 
observations. Their principal advantage is that they provide a physically justified way of 



12 
 

constructing spatially and temporally complete fields. In addition, reanalysis products include 
constrained estimates of physically unobservable quantities that may be of interest. 
However, confidence in attribution statements based on reanalyses depends on the uncertainties 
inherent to the renanalysis procedures. 

V. Attributing Extreme Events to Climate Change 
 
Traditional attribution statements have focused on long-term observed changes in climate. In 
contrast, extreme event attribution statements generally focus on the influence of human 
activities on a single event (or sometimes a single class of events). 
 
In 2003, after his house in Oxford, England, was flooded by an exceptionally rainy storm, 
climate scientist Myles Allen proposed that the human influence on severe weather events could 
be quantified.17 Prior to that, climate scientists tended not to say much about the human 
influence on individual extreme weather events. Instead, they would say something like “While 
no individual event can be tied to climate change, what happened is consistent with 
expectations.” 
 
Today,  some kinds of individual events can be linked to climate change. Extreme event 
attribution techniques now make it possible under certain circumstances to formulate quantitative 
statements, with confidence intervals, about the human influence on many kinds of individual 
extreme weather and climate events. For example, in 2003, shortly after Allen’s proposal, central 
Europe experienced a disastrous heatwave that caused over 70,000 excess deaths. Using the 
high-quality observational record of European temperatures and a single climate model, 
scientists estimated that climate change likely at least doubled the chances of the measured 
maximum daytime temperatures. Since then, the field of extreme event attribution has expanded 
to include many types of extreme weather in addition to heatwaves—including heavy 
precipitation, floods, droughts, and some extreme storms such as hurricanes.18 
 
 
The ability to quantify the human influence on a particular event such as a flood or heat wave is 
of direct relevance for judges. Extreme event attribution statements are of two equivalent types. 
The first is “Did global warming change the magnitude of this event given its estimated rarity?” 
The second is “Did global warming change the chances of an event of this magnitude?” These 
two questions are not independent, as illustrated by Figure 5. In this figure, the likelihood of a 
given temperature in Washington, D.C., as calculated by models is plotted as a function of its 
return time. Return time—the period in which we might expect an event to recur on average—is 
a key term for stating the likelihood of an event. The black line averages the model simulations 
under present-day conditions of global warming. The red line averages the simulations under 
preindustrial climate conditions. The intersection of the vertical line with the black line indicates 
that, if the current climate were unchanging, temperatures would reach 41oC  about once every 
20 years on average over a long period of time. But the climate is changing, so a better way of 
describing current conditions is to say that there is a 1-in-20 or 5% chance of reaching 41oC this 
year. In a preindustrial climate, the 20-year event would have been at about 39oC , as indicated 

 
17 Myles Allen, Liability for Climate Change, 421 Nature 891 (2003), https://doi.org/10.1038/421891a. 
18  (Herring et al., 2022, 2019, 2018, 2016, 2015, 2014; Peterson et al., 2013, 2012). 
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by the intersection of the vertical line with the red curve. Therefore, climate change caused the 
20-year event to be about 2oC warmer. 
 
 

 
Figure 5: A 20-year event of surface air temperature near Washington, D.C., is about 2oC (3.6oF) 
higher in a realistic climate (black line) than in a cooler counterfactual climate without 
anthropogenic climate change (red line). Units: Kelvins. Source: Michael Wehner et al., Early 
21st Century Anthropogenic Changes in Extremely Hot Days As Simulated by the C20C+ 
Detection and Attribution Multi-model Ensemble, 20 Weather & Climate Extremes 1, 6 (2018). 
[Need to redraw graph with degrees Celsius as units.] 
 
 
The second question regarding likelihood is more nuanced. The horizontal dashed line drawn at 
39oC intersects the black curve at a return time of about 2.5 years under present-day climate 
conditions. It intersects the red line at a return time of 20 years under preindustrial conditions. 
Hence, the chances of reaching 39oC have been increased by climate change by a factor of 20/2.5 
or eight times. 
 
Hence, the questions about human caused changes in probability and magnitude of individual 
extreme weather events are two sides of the same coin. However, changes in magnitude are often 
more easily interpreted when considering changes in the impacts of extreme events as described 
below. 
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Confidence in individual extreme event attribution statements is increased if D&A studies have 
produced more general statements about the relevant variables or regions. However, this is not 
strictly necessary, and extreme event attribution statements can be made even if trends in similar 
events have not been detected (Knutson, 2017). 
 
Extreme heat Figure 5 also demonstrates some of the issues associated with attribution 
statements involving extreme heat. The high temperature curves without climate change (red) 
and with climate change (black) approach values of 39oC and 41oC, respectively, and appear 
never to go higher. Was a temperature of 106oF impossible without climate change, as this curve 
would suggest? Most attribution statements would likely not make such a strong claim from this 
model calculation but would say that the likelihood of the temperature rising that high is very 
low but not absolutely zero because of statistical uncertainty. Quantifying the uncertainty in this 
upper bound is an ongoing topic in statistical research. 
 
Figure 5 shows that the temperature change attributable to human activities in the once in 50- or 
100-year heatwave is not very different than the once in 20-year event. This consequence of the 
distribution of extreme heat events in the atmosphere over time, in which high-temperature 
events of any kind are extremely rare, permits confidence in attribution statements about 
heatwaves in advance of their occurrence. Figure 6 applies this analysis to the continental United 
States, which shows one model’s estimate of the change in 20-year temperatures attributable to 
climate change. This change is nearly identical in pattern and magnitude to the model’s changes 
in 50-year temperatures. A confident attribution statement is therefore that almost any heatwave 
that occurs now in the United States is about 3.5oF to 4.5oF warmer than it would have been 
without climate change. This attribution statement can be made without estimating the 
probability of the heatwave temperature as long as it is thought to be rare. It would even extend 
to record temperatures, as long as the existing records are not broken by a large amount. 
However, in the case of far outliers, such as the 2021 Pacific Northwest heatwave, certain 
assumptions of this theory are violated and only less definitive statements can be made. 
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Figure 6: High temperatures during rare heatwaves in much of the United States are estimated to 
be 3.5oF to 4.5oF higher due to changes humans have made in the composition of the 
atmosphere. Adapted from Michael Wehner et al., Early 21st Century Anthropogenic Changes in 
Extremely Hot Days As Simulated by the C20C+ Detection and Attribution Multi-model 
Ensemble, 20 Weather & Climate Extremes 1 (2018). 
 
Precipitation Estimating the human influence on heavy precipitation events is more complicated 
than for heatwaves. Precipitation is a sporadic event, and extreme precipitation even more so. 
Well-established physical laws indicate that the capacity of the atmosphere to hold water vapor 
increases by about 7% per degree Celsius of warming. However, recent attribution simulations 
suggest that this rate is a lower bound for precipitation increases in certain types of extreme 
storms and that the actual rate can exceed this lower bound by factors of two or three.19 
 
The computational demands of models with resolutions fine enough to capture the processes and 
conditions of severe storms, including hurricanes, restrict the duration of simulations using 
current supercomputers. However, shorter but more constrained simulations using weather 
prediction models have proven to be useful in deriving more constrained attribution statements. 
These so-called “storyline” attribution statements can answer the first question above about the 

 
19 Christina M. Patricola et al., Future Changes in Extreme Precipitation Over the San Francisco Bay Area: 
Dependence on Atmospheric River and Extratropical Cyclone Events, 36 Weather & Climate Extremes 1 (2022), 
https://doi.org/10.1016/j.wace.2022.100440; Kevin A. Reed et al., Attribution of 2020 Hurricane Season Extreme 
Rainfall to Human-Induced Climate Change, 13 Nature Commn’s 1 (2022), https://doi.org/10.1038/s41467-022-
29379-1. 

https://doi.org/10.1016/j.wace.2022.100440
https://doi.org/10.1038/s41467-022-29379-1
https://doi.org/10.1038/s41467-022-29379-1
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human induced change in magnitude of an event but cannot inform about the human induced 
change in its probability. For instance using a version of the Weather Research and Forecasting 
model, the author and a colleague,20 analyzed 15 different large tropical cyclones (that is, 
hurricanes) and were able to make robust predictions of precipitation increases. Other 
simulations of dozens of individual tropical cyclones suggest best estimates of anthropogenic 
increases in precipitation that are twice the typical rate of 7% for the most intense storms21 In 
general, the human influence on hurricanes remains a topic of active research and public interest. 
 
Other types of storms have received less attention from the attribution community. Recent 
research on atmospheric river storms, which carry intense plumes of moisture from the oceans 
onto land, impacting the San Francisco Bay Area has found that precipitation also can increase at 
about twice the 7% rate,22 though the physical mechanisms of change are very different than for 
tropical cyclones. 
 
Little is known about the increases in extreme extratropical storms such as occur in the winter, or 
about the intense summer mesoscale convective systems that can occur in continental interiors. 
Limited studies have analyzed the human influence on the environmental conditions that support 
tornadoes, and  a consensus on the influence of climate change on them has not been reached.23 
 
Drought Assessing the impact of global warming on drought can be complicated and is less 
certain. The National Oceanic and Atmospheric Administration (NOAA) categorizes drought as 
a hierarchy of four related conditions. The first, meteorological drought, is characterized by a 
deficit of precipitation compared to normal conditions. The second, agricultural (or ecological) 
drought, is characterized by a deficit of soil moisture compared with normal conditions. The 
third, hydrological drought, is characterized by a deficit of water runoff compared to normal 
conditions. The fourth, socioeconomic drought, occurs when demand for water exceeds the 
supply. 
 
Agricultural drought depends both on the precipitation that falls on the ground and on the loss of 
moisture from plants and soils into the atmosphere. Evaporation from bare ground depends 
strongly on air temperature. As climate change increases temperature, evaporation also increases, 
leading to drier soils. Transpiration from plants depends even more strongly on air temperature. 
As temperature increases, plants cool themselves by evaporating water from their leaves and 

 
20 Christina M. Patricola et al., Future Changes in Extreme Precipitation Over the San Francisco Bay Area: 
Dependence on Atmospheric River and Extratropical Cyclone Events, 36 Weather & Climate Extremes 1 (2022), 
https://doi.org/10.1016/j.wace.2022.100440. 
21 Kevin A. Reed et al., Anthropogenic Influence on Hurricane Dorian’s Extreme Rainfall, 102 Bull. of Am. 
Meteorological Soc’y S9 (2021), https://doi.org/10.1175/BAMS-D-20-0160.1; Kevin A. Reed et al., Attribution of 
2020 Hurricane Season Extreme Rainfall to Human-Induced Climate Change, 13 Nature Commn’s 1 (2022), 
https://doi.org/10.1038/s41467-022-29379-1; Kevin A. Reed et al., Forecasted Attribution of the Human Influence on 
Hurricane Florence, 6 Sci. Advances 1 (2020), https://doi.org/10.1126/sciadv.aaw9253. 
22 Christina M. Patricola et al., Future Changes in Extreme Precipitation Over the San Francisco Bay Area: 
Dependence on Atmospheric River and Extratropical Cyclone Events, 36 Weather & Climate Extremes 1 (2022), 
https://doi.org/10.1016/j.wace.2022.100440. 
23 Emily Bercos-Hickey et al., Anthropogenic Influences on Tornadic Storms, 34 J. of Climate 8989 (2021), 
https://doi.org/10.1175/JCLI-D-20-0901.1; Noah S. Diffenbaugh, Robust Increases in Severe Thunderstorm 
Environments in Response to Greenhouse Forcing, 110 PNAS 16361 (2013). 

https://doi.org/10.1016/j.wace.2022.100440
https://doi.org/10.1038/s41467-022-29379-1
https://doi.org/10.1016/j.wace.2022.100440
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stems. In very hot conditions, plants can draw moisture from their root system and release it into 
the atmosphere until there is very little soil moisture left. Because of these processes, many 
studies have attributed increases in agricultural drought conditions to human influences.24 
 
Consensus on the effects of climate change on meteorological drought occurrences has not been 
reached in regions of the United States. Only in Mediterranean regions do studies demonstrate a 
consistent human influence on precipitation deficits, and even here confidence is low.25 As 
climate continues to warm, meteorological drought conditions in Mexico and the Southwest 
United States are projected to become more common (Easterling et al., 2017), but a robust signal 
of this process has not yet been detected. 

VI. The Impacts of Extreme Events 
 
Attributions statements can also be made that link the extreme weather events influenced by 
human activities with the socioeconomic impacts of those events. As an example, consider 
Hurricane Harvey, which inundated much of the greater Houston area in 2017. What made 
Hurricane Harvey such an impactful event was that the storm stalled atop the Gulf Coast of 
Texas for about three days, dumping copious amounts of rain on land. Three independent 
analyses of Hurricane Harvey have quantified the increase in total rainfall that can be attributed 
to human-induced climate change.26 The average finding of these analyses is that global 
warming increased the region’s precipitation during Hurricane Harvey by about 19%, with a 
lower bound of 7 percent and an upper bound of 38 percent. 
 
To evaluate the effect of a 19% increase in precipitation, researchers used a model that had 
demonstrated its ability to accurately simulate the flood caused by Hurricane Harvey given the 
available precipitation observations.27 To construct a counterfactual “flood that might have been” 
without climate change, they decreased the observed precipitation uniformly by the range of the 
published precipitation attribution statements.28 They found that climate change increased both 

 
24 Sonia I. Seneviratne et al., Weather and Climate Extreme Events in a Changing Climate, Chapter 11 in IPCC, 
CLIMATE CHANGE 2021: The Physical Science Basis (2021); Michael F. Wehner et al., Droughts, Floods, and 
Wildfire, Chapter 8 in U.S. GLOBAL CHANGE RES. PROGRAM, CLIMATE SCIENCE SPECIAL REPORT: FOURTH 
NATIONAL CLIMATE ASSESSMENT VOL. 1 (2017). 
25 Sonia I. Seneviratne et al., Weather and Climate Extreme Events in a Changing Climate, Chapter 11 in IPCC, 
CLIMATE CHANGE 2021: The Physical Science Basis (2021). 
26 Mark D. Risser & Michael F. Wehner, Attributable Human-Indiced Changes in the Likelihood and Magnitude of 
the Observed Extreme Precipitation During Hurricane Harvey, 44 Geophysical Rsch. Letters 12457 (2017), 
https://doi.org/10.1002/2017GL075888; Geert Jan van Oldenborgh et al., Attribution of Extreme Rainfall From 
Hurricane Harvey, August 2017, 12 Env’t Rsch. Letters 1 (2017), https://doi.org/10.1088/1748-9326/aa9ef2; S-Y 
Simon Wang et al., Quantitative Attribution of Climate Effects on Hurricane Harvey’s Extreme Rainfall in Texas, 13 
Env’t Rsch. Letters 1 (2018), https://doi.org/10.1088/1748-9326/aabb85. 
27 Michael Wehner & Christopher Sampson, Attributable Human-Induced Changes in the Magnitude of Flooding in 
the Houston, Texas Region During Hurricane Harvey, 166 Climatic Change 1 (2021), https://doi.org/10.1007/s10584-
021-03114-z; Oliver E.J. Wing et al., A Flood Inundation Forecast of Hurricane Harvey Using a Continental-Scale 
2D Hydrodynamic Model, 4 J. of Hydrology X 1 (2019), https://doi.org/10.1016/j.hydroa.2019.100039. 
28 Michael Wehner & Christopher Sampson, Attributable Human-Induced Changes in the Magnitude of Flooding in 
the Houston, Texas Region During Hurricane Harvey, 166 Climatic Change 1 (2021), https://doi.org/10.1007/s10584-
021-03114-z. 
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https://doi.org/10.1007/s10584-021-03114-z
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the extent and depth of the flooding, with the magnitude of the increases depending on the 
amount of increased precipitation estimated to result from global warming. 
 
The left side of Figure 7 shows the actual flood and two of the counterfactual floods in the South 
Houston and Pasadena neighborhoods, which represent a small subsection of the total region 
analyzed. The model has a resolution of 30 m, which is about the size of a suburban house and 
its yard. The top panel shows the simulated flood using observed precipitation data during 
Hurricane Harvey and is a close approximation of the flooding that actually occurred. The 
middle panel shows the counterfactual flood simulation corresponding to the lower bound (a 7% 
increase) of published precipitation attribution statements. The area flooded is not substantially 
different between the two simulations, but the flood that actually occurred is about a foot deeper 
than it would have been if climate change had not produced a 7% increase in total rainfall. The 
lower panel shows the counterfactual flood corresponding to the upper bound (a 38% increase) 
of published precipitation attribution statements. In this case, many homes that were flooded 
would not have been if climate change had not increased total rainfall by 38%. In addition, the 
actual flood was more than 3 feet deeper than the counterfactual flood because of climate 
change. 
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Figure 7: Simulations of the actual flood that occurred in the South Houston and Pasadena 
neighborhoods can be compared with the floods that would have occurred without climate 
change. a) The flood that was. b) The flood that would have occurred in the absence of climate 
change if human activities increased Harvey’s storm total precipitation by 7%. c) The flood that 
would have occurred in the absence of climate change if human activities increased Harvey’s 
precipitation by 38%. Source: Michael Wehner & Christopher Sampson, Attributable Human-
Induced Changes in the Magnitude of Flooding in the Houston, Texas Region During Hurricane 
Harvey, 166 Climatic Change 1, (2021) (Figure 2).  
 
Over the greater Houston area, this analysis found that for the best estimate of a 19% human-
induced increase in precipitation, the flood area was increased by 14%. The reinsurance 
companies estimate the insured losses of Hurricane Harvey to be about $90 billion. Assuming 
that damages were mostly from the flood and that properties were equally valued and distributed 
uniformly throughout the region yields a crude estimate of $13 billion for the insured loss due to 
climate change. The 19% precipitation attribution statement also corresponds to a four-fold 
human-induced increase in the probability of the actual flood. Thus, as a best estimate, the 
probability of an insured  $90 billion hurricane loss in Texas was quadrupled due to climate 
change. 
 
The very high resolution of the model and maps permits individuals to know if climate change 
flooded their own house. More generally, these maps permit much more detailed overall damage 
estimates. Projecting real estate value maps onto the flood maps reveals that, as a best estimate, 
32% of flooded homes in Harris County would not have been flooded without climate change. 
Furthermore, regardless of climate change, 75% of the flooded homes were outside the federal 
100-year floodplain and were thus uninsured, adding to the insured loss.29 Figure 8 shows the 
upper bound on the distribution of homes that were flooded in Harris County due to climate 
change. 
 

 
29 Kevin T. Smiley et al., Social Inequalities in Climate Change-Attributed Impacts of Hurricane Harvey, 13 Nature 
Comm’s 1 (2021), https://doi.org/10.1038/s41467-022-31056-2. 

https://doi.org/10.1038/s41467-022-31056-2
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Figure 8: Each hexagonal bin symbolizes the number of residential buildings that would not have 
flooded without the added impact of climate change in Harris County, Texas, during Hurricane 
Harvey. These calculations were made using a 38% attributable precipitation increase from 
climate change. Source: Kevin T. Smiley et al., Social Inequalities in Climate Change-Attributed 
Impacts of Hurricane Harvey, 13 Nature Comm’s 1 (2021) (Figure 1). 
 
Census data reveals that Hurricane Harvey’s flood damages were not distributed equally across 
socioeconomic groups. Figure 9 reveals that while Hispanic households comprise about 36% of 
the population Harris County, about half of the flooded homes were Hispanic households. The 
percentage was about the same whether or not climate change caused these homes to be flooded, 
as the percentage is relatively insensitive to which precipitation attribution statement is used. 
Additional analysis reveals that damages increased with wealth in white neighborhoods. In 
Hispanic neighborhoods, the situation was reversed, with damages increasing with poverty. With 
documentation of the relative contribution that wealthy households make to increases in 
greenhouse gases compared with poor households, such analyses can be used to quantify 
environmental and other social injustices30 
 

 
30 Kevin T. Smiley et al., Social Inequalities in Climate Change-Attributed Impacts of Hurricane Harvey, 13 Nature 
Comm’s 1 (2021). 
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Figure 9. The average percentage of household properties flooded during Hurricane Harvey 
varied by ethnic group. Green: Not flooded. Red: Flooded without climate change. Orange: 
Flooded because of climate change (with a 38% human-induced precipitation increase). Source: 
Kevin T. Smiley et al., Social Inequalities in Climate Change-Attributed Impacts of Hurricane 
Harvey, 13 Nature Comm’s 1 (2021) (Figure 2). 
Other human impacts of extreme weather have been quantified. Of particular interest are the 
effects of climate change on deaths resulting from heatwaves, which are the deadliest of all 
extreme weather events.31 Epidemiology studies have developed relationships between mortality 
risk and temperature.32 These curves tend to steepen at very high temperatures, implying that 
small increases in temperature at the high end have large increases in mortality. By estimating 
the attributable human temperature increase during a heatwave and using the observed 
temperature, the change in mortality risk can be estimated. 
 
Another method maps these mortality/temperature curves onto temperature changes to produce 
plots like Figure 5 of return periods for mortality risk. This makes it possible to estimate both the 
number of people who died because of the influence of climate change on a heatwave and the 

 
31 World Meteorological Org., Atlas of Mortality and Economic Losses From Weather, Climate and Water Extremes 
(1970-2019) (2021). 
32 Michela Baccini et al., Heat Effects on Mortality in 15 European Cities 19 Epidemiology 711 (2008), 
https://doi.org/10.1097/EDE.0b013e318176bfcd. 
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change in probability of mortality.33 However, many other factors also need to be considered 
when extending attribution statements to the human impacts of extreme events34 
 
Finally, not all climate impacts come in the form of extreme weather events. Climate change also 
causes subtle shifts in weather, such as additional warm days per year or fewer cool days per 
year, that can have substantial human impacts. Climate scientists have developed an index to 
characterize the influence of climate change on the temperature on any given day and region in 
the United States, including both extreme and more modest temperatures.35 

VII. Attribution of Climate Change to Sources 
 
Who is responsible for climate change and its associated impacts? While this question extends 
beyond science and into the realm of ethics and philosophy, scientific research in the field of 
source attribution can inform thinking on this complex issue. 
 
One of the first things to consider when assessing responsibility for climate change is the source 
and the emissions derived from that source. The source may be an actor such as a country or a 
company, an economic sector, or a human activity. A given source’s contribution to climate 
change may be derived from observational data of greenhouse gas emissions, modeling, or 
corporate and governmental reports of emissions. Uncertainties in these estimates come from 
data gaps, the unknown climatic impacts of historical land-use changes, and the nonlinear 
behavior of greenhouse gases in the climate system, among other factors.36 With these 
uncertainties in mind, a source’s proportional contribution to climate change can be estimated by 
dividing the emissions associated with that source by the total of accumulated anthropogenic 
emissions. 
 
To tie the emissions of a source to a specific climate impact, models must first be used to 
estimate the contribution of a source’s emissions to the concentration of greenhouse gases in the 
atmosphere. That incremental change in atmospheric concentration then must be linked to a 
given impact of climate change, such as sea level rise or a heatwave. 
 
The field of greenhouse gas accounting has important implications for climate law and 
governance. Notably, the methodological approach taken when conducting a greenhouse gas 
accounting survey can dramatically influence the results of that survey. Three such accounting 
methods have been devised for government-based accounting: 1) territorial accounting, which 
considers only emissions that are directly generated within a given country or territory, 2) 
consumption-based accounting, which considers additional emissions embodied in products that 
are imported into a country or territory, and 3) extraction-based accounting, which considers the 
emissions associated with the combustion of exported fossil fuels from the country or territory. 
While the United Nations Framework Convention on Climate Change currently uses the 

 
33 Daniel Mitchell et al., Attributing Human Mortality During Extreme Heat Waves to Anthropogenic Climate 
Change, 11 Env’t Rsch. Letters 1 (2016), https://doi.org/10.1088/1748-9326/11/7/074006. 
34 Sarah Perkins-Kirkpatrick et al., On the Attribution of the Impacts of Extreme Weatehr Events to Anthropogenic 
Climate Change, 17 Env’t Rsch. Letters 1 (2021), http://doi.org/10.1088/1748-9326/ac44c8. 
35 The tool is available at https://www.climatecentral.org/tools/climate-shift-index. 
36 Michael Burger et al., The Law and Science of Climate Change Attribution, 45 COLUM. J. ENV’T L. 57 (2020). 

Michael Wehner
I left this paragraph in for now, but I don’t really see the relevance to attribution.
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territorial accounting approach, there is an ongoing push for countries to quantify additional 
indirect emissions. 
 
A private sector analog to these government-based emissions accounting methods is the 
characterization of emissions into three “scopes.” Scope 1 includes direct emissions associated 
with company operations. Scope 2 includes indirect emissions associated with purchasing energy 
such as electricity, steam, heat, or cooling. Scope 3 encompasses all indirect emissions 
throughout the full value chain of a company not already covered by scope 2, especially those 
generated by the consumption of products created through the burning of fossil fuels. The 
Securities and Exchange Commission recently proposed rules to make the reporting of scope 1 
and 2 emissions, in addition to scope 3 emissions in some cases, mandatory. (ref EPA. SEC) 
 
In litigation related to climate impacts, the first step in assessing responsibility is attributing the 
emissions of a particular country or entity to its proportional contribution to climate change. The 
second step is assigning to an impact that source’s contribution to climate change. The first study 
to do this investigated the proportional contribution of the emissions of individual nation-states 
to global mean surface temperature. (ref Otto) Interestingly, the authors found that the framing of 
this question matters significantly to the outcome. Calculating a proportional contribution 
derived from quantifying the likelihood of the heatwave if a given region had been the only 
region to emit yields a different result than calculating a proportional contribution derived from 
the likelihood of the heatwave if that region had not emitted. [Does she say why, since a given 
concentration of CO2 equivalents should always yield the same effect regardless of who emitted 
them? Non-linearity?] 
 
Judges are increasingly being asked to assign responsibility for climate change. Numerous states 
and several local governments have brought suit against the world’s largest oil companies, their 
associations, and others for climate-related damages. One kind of lawsuit alleges that the 
companies worked to delay climate policies and are therefore responsible for some amount of the 
climate damages with which these governments are now burdened. If and when such cases come 
to trial, source attribution science will likely play a central role. 

VIII. Conclusion 
 
According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: 
“It is unequivocal that human influence has warmed the atmosphere, ocean and land. Widespread 
and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred”.37 Such a 
statement could not have been made without the many D&A analyses that underlie it. 
 
Developments in attribution science over the past two decades have made possible many robust 
statements about the human influence on climate. These statements extend to both long-term 
trends and extreme events, including heatwaves, floods, droughts, and storms. The extension of 
attribution science to socioeconomic damages and inequality is now underway and is likely to 
become an important factor in assigning responsibility in legal proceedings. 
 
 

 
37 IPCC, CLIMATE CHANGE 2021: THE PHYSICAL SCIENCE BASIS, SUMMARY FOR POLICYMAKERS (2021). 
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