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The emerging impacts of climate change have motivated legal claims against major emitters 10 

to hold them responsible for these impacts. However, a dearth of evidence quantitively linking 11 

major emitters to the downstream economic impacts of their emissions makes the causal linkages 12 

between emitter and impact unclear, especially given the compounding uncertainties at each step in 13 

the causal chain from emission to impact. Here we simulate idealized contributions to regional 14 

changes in extreme heat and the resulting economic damages, accounting for diverse sources of 15 

uncertainty. We derive a generalizable relationship between an actor’s contribution to global 16 

emissions and the loss and damage from extreme heat attributable to that contribution, allowing us 17 

to tie both major fossil fuel firms and major emitting countries to heat-driven loss and damage for 18 

the first time. The top five fossil fuel firms have collectively driven more than $7 trillion in heat-19 

driven losses, primarily in lower-emitting tropical countries, and the top five emitting countries 20 

have driven more than $22 trillion. These results highlight the culpability of major emitters for the 21 

direct economic losses resulting from extreme heat and demonstrate the scientific underpinnings of 22 

claims for climate damage restitution. 23 

24 

Introduction 25 

The world has warmed by more than one degree Celsius since the preindustrial era due to 26 

anthropogenic emissions of greenhouse gases (1). This warming has increased the intensity of heat waves 27 

(2), droughts (3), and tropical cyclones (4), with striking negative consequences for economic growth (5, 28 

6), agricultural yields (7), and human mortality and morbidity (8). Importantly, the distribution of these 29 

impacts is deeply unequal, with stronger impacts in the warm, tropical regions that are least responsible 30 

for warming to date (5, 9, 10). 31 

The recognition of these and other impacts has motivated legal claims against major emitters, 32 

seeking to hold them accountable for the impacts of their emissions (11). A critical requirement for the 33 

success of these legal claims is causation: the ability to establish a clear causal chain between the actions 34 
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of emitters and damages suffered by plaintiffs (12). Given that greenhouse gas emissions are well-mixed 35 

and uncertainties compound across the causal chain from emissions to impact (13), establishing 36 

individualized causation for climate damages has been a key barrier for climate litigation to date (11). 37 

Advances in attribution science that link climate change to specific extreme weather events has 38 

been proposed as a key evidentiary piece of these claims of causation (14–16). However, attribution of an 39 

impact to global warming writ large is not legally sufficient to demonstrate the causal role of any 40 

individual actor (15), and research linking the emissions of an individual actor to the impacts of the 41 

resulting warming is still in its infancy. There is a long history of work linking individual actors to global 42 

emissions (17–20), global warming (19, 21–23), regional warming (24, 25), and impacts such as sea level 43 

rise (26) and ocean acidification (27). However, partly given the complexities and uncertainties associated 44 

with linking local warming to economic damages (28, 29), research has generally not quantified the 45 

monetary culpability of individual emitting actors.  46 

To close this gap, Callahan and Mankin (30) attributed economic damages from changes in 47 

country-level average temperature to national emissions, showing that countries like the U.S. and China 48 

could be quantitatively linked to trillions of dollars in losses in low-income and low-emitting tropical 49 

countries. These findings demonstrate a preliminary scientific basis for claims for restitution for climate 50 

damages, but several gaps remain. For example, victims of climate damages may desire restitution from 51 

fossil fuel firms or other non-state actors rather than countries, and impacts based on country-level 52 

average temperatures are potentially a poor proxy both for short-term periods of damaging extreme 53 

temperatures and for local impacts accruing to specific regions within countries. 54 

Here we extend the three-part attribution framework developed by Callahan and Mankin (30), 55 

which uses a simple climate model to calculate emitter contributions to historical global mean surface 56 

temperature (GMST) change, pattern scaling to propagate GMST change to the local level, and 57 

empirically grounded damage functions to transform local warming into economic losses. We make three 58 

key advances over this previous work: (1) we simulate the effects of idealized emissions contributions 59 

rather than specific countries, which generalizes our findings; (2) we analyze historical economic losses 60 

due to extreme heat rather than average temperatures; and (3) we calculate economic damages at the 61 

subnational level, which captures regional heterogeneity obscured by a country-level focus. Collectively, 62 

these advances allow us to quantify the roles of a wide range of actors in shaping local heat-driven losses, 63 

and thus the potential financial obligations of those actors to affected regions.  64 

 The first step of our analysis uses simulations with the Finite amplitude Impulse Response (FaIR, 65 

v2.1) climate model (31, 32) to calculate the effect of idealized emissions contributions on GMST change 66 

(Methods). We subtract a set of percentage contributions (e.g., 10% of annual emissions over 1850-2020) 67 

from global emissions and calculate the resulting GMST change (Fig. 1A). We then combine these 68 
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GMST contributions with pattern scaling coefficients derived from the sixth phase of the Coupled Model 69 

Intercomparison Project (CMIP6) (Fig. 1B, Methods). This approach allows us to calculate the change in 70 

extreme heat, defined as the temperature of the hottest five days in each year (“Tx5d”), in subnational 71 

regions around the world due to each emissions contribution (Fig. 1B). For example, an actor responsible 72 

for 5% of global emissions on average over 1850-2020 can be linked to a 0.08 °C increase in Tx5d in the 73 

average subnational region over 1991-2010 (Fig. 1B). Finally, we combine these contributions with 74 

previous empirical estimates of the effect of Tx5d changes on subnational economic growth (Fig. 1C). 75 

The effect of Tx5d increases in economic growth varies as a function of annual mean temperature, with 76 

regions above ~14 °C experiencing noticeable losses in years with more-intense extreme heat (5). While 77 

the effect of any one heat wave is only transient rather than persistent (Fig. 1C, inset), multiple or 78 

repeated warming-driven heat waves can be linked to long-term economic slowdown (5). We calculate 79 

1991-2020 economic damages from extreme heat attributable to total global warming as well as warming 80 

without a given actor, and difference these to calculate damages attributable to that actor (Methods).  81 

 At each step, our analysis incorporates uncertainty from the carbon cycle parameters in FaIR, 82 

from multiple climate models to derive the pattern coefficients, and from multiple bootstrap realizations 83 

of the empirical growth estimates. We also incorporate uncertainty in the construction of a global 84 

subnational GDP per capita (GDPpc) dataset, following Callahan and Mankin (5), necessary to fill in 85 

regions with missing data (Methods). Our final analysis samples uncertainty from all four of these sources 86 

to build distributions of attributable damages, distributions which we use to test the statistical significance 87 

of damages attributed to a given contribution in each region and year (30).  88 

 89 

Results 90 

 On average, an actor contributing 3% of historical emissions from 1850-2020 is responsible for 91 

$1.4 trillion (2020-equivalent) in global economic losses due to extreme heat over 1991-2020 (95% 92 

confidence interval [CI]: $0.45T – $2.8T) (Fig. 2A). Above 3%, damages attributable to larger 93 

contributions rise approximately linearly: each additional percentage point in an actor’s contribution 94 

increases its monetary responsibility to the rest of the globe by $500 billion (CI: $147B – $983B).  95 

 This analysis counts emissions from 1850-2020, but alternative start dates such as 1950 or 1990 96 

are also legitimate accounting choices (22) and strongly affect our results (Fig. 2B). For example, only 97 

counting emissions over 1950-2020 makes an actor contributing 3% of these emissions responsible for 98 

$294 billion in global heat-driven losses (CI: $90B – $615B), while only counting emissions over 1990-99 

2020 erases these damages entirely (Fig. 2B). The choice of start date is a political and legal one, and our 100 

results are consistent with other research showing that the subjective and political choices made in 101 

attribution discussions may have a substantial effect on the perceived culpability of major emitters (22). 102 
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 Our analysis leverages uncertainty at each step of the causal chain from emissions to impact in 103 

order to determine the statistical significance of these damages. Above contributions of ~2%, the resulting 104 

damages are robust and statistically significant (Fig. 2A). Below 2%, the relationship between 105 

contribution and damages begins to break down because the “signal” of an actor’s contributions is too 106 

small to be statistically significant relative to the “noise”. Most strikingly, our methodology yields no 107 

attributable damages for contributions below 1.5% of global emissions (Fig. 2A). However, the level 108 

below which damages are no longer statistically significant is regionally variable (Fig. 2C). For regions in 109 

the global tropics most strongly affected by extreme heat, any actor contributing more than 1.5-2% of 110 

global emissions can be linked to local damages despite the uncertainties associated with those damages. 111 

In subtropical and polar regions, the signal of damages from extreme heat is weaker, so actors must 112 

contribute 4-5% or more of global emissions in order to be tied to damages in these regions (Fig. 2C).  113 

 These generalizable conclusions demonstrate the value of measuring the effects of percentage 114 

contributions, rather than specific actors. This approach allows us to abstract away from debates over, for 115 

example, territorial versus consumption emissions. It also allows us to assess the contributions of multiple 116 

categories of actors such as fossil fuel firms and countries (Fig. 3). We use data from Heede (33) to 117 

represent the contributions of fossil fuel firms (“carbon majors”) and from the Community Emissions 118 

Data System (34) to represent the contributions of countries (Methods), and linearly interpolate across the 119 

contribution-damages relationship (Fig. 1A) to assign responsibility to each actor (Methods).  120 

 The five top-emitting carbon majors can be collectively tied to more than $7.5 trillion in heat-121 

driven economic losses (CI: $2.2T – $14.9T) (Fig. 3A), primarily in tropical and low-emitting regions 122 

(Fig. 3B). The top two, Chevron and ExxonMobil, are responsible for $1.8 and $1.6 trillion, respectively. 123 

Uncertainty is relatively large, with the likely (90%) range for Chevron’s contribution spanning $0.72T – 124 

$3.1T. However, the 99% range does not include zero for any of the top five carbon majors, indicating 125 

that it is virtually certain that these firms have made discernible contributions to global heat-driven loss 126 

and damage. On average, subnational regions around the world have experienced a ~0.84% reduction in 127 

annual GDP per capita due to the emissions of these top five carbon majors (Fig. 3B), with losses of 1% 128 

or more occurring in the tropical regions that have contributed least to warming (30).  129 

Alongside their contributions to global warming, litigation against carbon majors like 130 

ExxonMobil claims that they sowed doubt about the science of climate change (35) while internally 131 

predicting global warming with striking accuracy (36). Our results highlight that at the same time carbon 132 

majors were actively attempting to prevent action on climate change, they were contributing to more-133 

intense heat waves and resulting economic losses for the most vulnerable people globally.  134 

Our methodology also allows us to link major emitting countries to similar losses. Based on their 135 

average contributions to historical CO2 and CH4 emissions, we find that the United States drove $10.2 136 
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trillion in heat-driven losses over 1991-2020, China drove $6.3 trillion, and Russia, India, and Germany 137 

each drove more than $2.5 trillion (Fig. 3C). Together, the top five emitting countries are responsible for 138 

$22 trillion in heat-driven loss and damage, primarily in the tropics (Fig. 3D). These results are consistent 139 

work on countries’ contributions to loss and damage (30), but illustrate the role of extreme heat rather 140 

than average temperature and highlight the spatial heterogeneity of losses at the subnational level.  141 

 142 

Discussion 143 

Our results highlight the culpability of major emitters for warming-driven economic losses in the 144 

lowest-emitting and lowest-income parts of the world. Clearly connecting emitters to impacts in this way 145 

may help litigators demonstrate a causal nexus between defendants and the damages they may have 146 

caused. Additionally, our incorporation of uncertainty at each step in the causal chain illustrates that 147 

major emitters should not be able to claim plausible deniability for the effects of their emissions: the 148 

signal of their emissions is statistically identifiable against a robust characterization of the noise. 149 

Importantly, however, we address only one piece of the climate damages puzzle. Extreme heat is 150 

only one of the physical impacts of climate change, which also include other extreme events such as 151 

tropical cyclones as well as slow-moving factors such as sea level rise (37). Further, economic damages 152 

are only one component of loss and may be secondary in subjective importance to declines in biodiversity 153 

or loss of cultural resources such as heritage sites. Finally, legal questions such as the time of emissions 154 

accounting and the inclusion of “fair share” emissions cannot be answered by scientific analysis. The 155 

outcome of climate litigation will be determined by courtroom discussions and legal principles such as 156 

sovereign immunity, and our results can only—at best—provide a scientific basis for these discussions.  157 

Despite these caveats, our approach offers a flexible and generalizable framework to characterize 158 

loss and damage from individual emitters. Extreme heat is one of the starkest effects of climate change, 159 

and the simple emergent relationship between emissions contributions and heat-driven loss and damage 160 

implies that our results can be applied to other actors or groups of actors. As climate litigation against 161 

major emitters develops, this and other similar approaches may provide critical scientific support for 162 

claims for restitution from the most vulnerable people across the globe.  163 
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 164 
Fig. 1 | Simulating contributions to damages from extreme heat. A) Global CO2 emissions from 1850 165 

to 2020, with the global total (black line), a scenario in which 10% of emissions are removed (red dashed 166 

line), and a scenario in which 20% of emissions are removed (blue dashed line). B) Contributions of 167 

idealized actors to the global average regional change in Tx5d over 1991-2020. Black line shows the 168 

mean for each percentage contribution, where the mean is taken across all combinations of FaIR 169 

simulations and pattern scaling coefficients. Uncertainty is shown in gray, with the inner 66% (“likely”), 170 

90% (“very likely”), and 99% (“virtually certain”) percentiles shaded following Intergovernmental Panel 171 

on Climate Change (IPCC) convention. C) Effect of extreme heat on economic growth from Callahan and 172 

Mankin (5). Main plot shows the contemporaneous marginal effect of a 1-°C increase in Tx5d on 173 

economic growth across a range of annual mean temperatures, with the mean shown in the red line and 174 

the 95% confidence interval shaded. Inset plot shows the cumulative growth effect of Tx5d for an 175 

example warm region (average temperature of 25 °C), with the dots showing the mean and the vertical 176 

bars showing the 95% confidence intervals.   177 
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 7 

 178 
Fig. 2 | Generalized contributions to heat-driven damages. A) Cumulative global heat-driven 179 

economic losses, in trillions of 2020-equivalent $US, for a range of contributions to historical emissions. 180 

Emissions contributions are calculated over 1850-2020 while damages are calculated over 1991-2020. 181 

Black line denotes the mean across 10,000 Monte Carlo simulations (Methods), while gray shading shows 182 

uncertainty following IPCC convention. B) Heat-driven losses from a 5% contribution to global 183 

emissions with start dates of 1850, 1950, and 1990. In all cases, emissions contributions end in 2020 and 184 

damages are calculated over 1991-2020. C) Minimum statistically significant contribution to heat-driven 185 

losses in each subnational region. Any actor with a contribution above the level shown for a given region 186 

can be linked to damages in that region with statistical confidence. Missing data (white) in some regions 187 

results from a lack of continuous GDP per capita data over 1991-2020.  188 
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 8 

 189 
Fig. 3 | Specific contributions to heat-driven damages. A) The contribution of individual fossil fuel 190 

firms (“carbon majors”) to global heat-driven losses, inferred from the generalized response shown in Fig. 191 

2A. Black line and shading show mean and uncertainty as in Fig. 2A. Lower inset text denotes the 192 

emissions contribution of each firm. B) Average regional change in GDPpc due to the combined effects 193 

of the top five emitting carbon majors, shown in (A). C) The contribution of individual countries to global 194 

heat-driven losses. D) as in (B), for the combined effects of the top five emitting countries shown in (C).   195 DRAFT; P
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Methods 196 

Data 197 

 Observed climate data are drawn from the ERA5 reanalysis (38), from which we calculate 198 

regional Tx5d and average temperature. We calculate these variables at the subnational level by first 199 

calculating their values for each grid point and then averaging to regions using GADM shapefiles. We 200 

weight grid cells within each region by year-2000 population to capture the within-region distribution of 201 

economic activity. We similarly calculate regional Tx5d and average temperature from an ensemble of 202 

climate models from the sixth phase of the Coupled Model Intercomparison Project, or CMIP6 (39, 40). 203 

We use the “historical,” “historical-nat,” and “ssp245” experiments from 80 CMIP6 simulations. The 204 

natural simulations extend from 1850 to 2020, and we splice the historical simulations (which end in 205 

2014) with the first six years of each model’s ssp245 simulation to extend them to 2020 (40). Finally, we 206 

draw subnational economic data from the MCC-PIK Database of Subnational Economic output (41) and 207 

country-level economic data from the World Bank (42). 208 

 209 

Historical contributions to global warming 210 

We use the Finite amplitude Impulse Response (FaIR, v2.1) climate model (31, 32) to simulate 211 

idealized contributions to global warming in a “leave-one-out” approach, following Callahan and Mankin 212 

(30). We simulate a range of percentage contributions to emissions over the 1850-2020, 1950-2020, and 213 

1990-2020 time scales. For each percentage contribution over each time scale, we subtract that percent of 214 

emissions from the global total, run FaIR with the reduced emissions, and extract the resulting GMST 215 

change time series. We also run simulations with global total emissions and with natural emissions only. 216 

The GMST change due to a single actor’s contribution is the difference between the GMST change from 217 

the total-emissions simulation and that from the simulation in which that actor is excluded. In Figs. 1 and 218 

2, we show contributions from 0.5 to 20%, though we simulate contributions up to 70% for application in 219 

Fig. 3.  220 

We calculate contributions for CO2, CH4, N2O, sulfur, black carbon, organic carbon, NH3, NOx, 221 

volatile organic carbons, and CO. CO2, CH4, N2O are the primary greenhouse gases, while the rest of 222 

these species are aerosol precursors and ensure that our simulations capture both the warming effect of 223 

greenhouse gases as well as the cooling effect of aerosols.  224 

We sample carbon cycle and climate uncertainty in FaIR following Leach et al. (32) , which is 225 

similar to the method previously used by Callahan and Mankin (30). Specifically, we focus on the r0, ru, 226 

and rT parameters, which control the initial carbon uptake strength (r0) as well as how carbon uptake 227 

varies with cumulative uptake (ru) and temperature change (rT). We generate distributions of 250 scaling 228 
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 10 

factors for each of these parameters exactly following Table 5 in Leach et al. (32). We then run a separate 229 

simulation for each contribution level, contribution time scale, and set of carbon cycle scaling factors.  230 

 231 

Pattern scaling 232 

 To calculate the local effect of an actor’s emissions, we use pattern scaling to calculate the 233 

change in regional Tx5d and average temperatureas a function of changes in the global mean temperature. 234 

We do this by first calculating global mean temperatures, regional annual average temperatures, and 235 

regional annual Tx5d from an ensemble of 80 coupled climate model simulations from CMIP6. Global 236 

mean temperatures are spatially weighted by the square root of the cosine of latitude. We then take the 237 

difference between the historical and natural climate model simulations over 1991-2020 for each quantity 238 

to calculate the effect of anthropogenic climate change. Finally, for each climate model, we linearly 239 

regress each region’s change in annual average temperature or Tx5d onto the change in global mean 240 

temperature. The coefficient from this linear regression denotes the anthropogenic change in regional 241 

average temperature or Tx5d produced by a 1-°C anthropogenic change in the global mean temperature.  242 

We then multiply the FaIR-derived GMST time series by the pattern scaling coefficient for each 243 

region, yielding time series of predicted Tx5d and annual mean temperature for each region under the 244 

various FaIR contribution simulations. To quantify uncertainty in this procedure, we use 8 unique climate 245 

models, several with many realizations for a single model. This ensemble allows us to sample uncertainty 246 

resulting from differing model representations of the local response to global climate change. The 247 

different models sample different structural and parametric choices, whereas the different realizations 248 

from individual models sample the divergence that results from internal climate variability alone.  249 

   250 

Inferring continuous regional income 251 

 Our analysis requires continuous regional GDPpc data to calculate damages, but many regions 252 

either have missing or incomplete GDPpc data over the 1991-2020 period of interest. This data gap risks 253 

skewing loss and damage analysis away from low-income places, which disproportionately lack data (43). 254 

To close this gap, we follow Callahan and Mankin (5) by inferring regional GDPpc from country-level 255 

GDPpc and regional nightlights data. For the regions in which we do have GDPpc data, we regress their 256 

GDPpc onto their country’s GDPpc, their regional nighttime luminosity, and the interaction between 257 

country GDPpc and luminosity. The predictions from this model closely match observed regional GDPpc 258 

and outperform more complex models in out-of-sample cross-validation testing (5).  259 

 We use this statistical model to predict regional GDPpc globally based on country-level GDPpc 260 

and nightlights. We sample uncertainty in this procedure in two ways. First, we use bootstrap resampling 261 

on the statistical model to capture parametric uncertainty (sampling with replacement by country to 262 
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 11 

preserve within-country spatiotemporal autocorrelation). Second, we add a draw from a random normal 263 

with mean zero and standard deviation equal to the standard deviation of the residuals to the final 264 

predictions to account for residual uncertainty. This procedure allows us to propagate uncertainty in this 265 

income extrapolation procedure into our final damages calculations.  266 

 267 

Attributing damages from extreme heat 268 

 To calculate damages due to extreme heat, we first construct two counterfactual time series for 269 

regional Tx5d and annual mean temperature: One in which no anthropogenic emissions are produced 270 

(“natural”) and one in which all emissions are produced except for an individual actor’s contribution 271 

(“leave-one-out”). These counterfactual time series are constructed by differencing the observed Tx5d or 272 

annual mean temperature and the change in those quantities due to all emissions (to construct the natural 273 

counterfactual) or the emissions of a single contributor (to construct the leave-one-out counterfactual).  274 

We then apply the regression coefficients from Callahan and Mankin (5) to the natural and 275 

observed time series for each region to calculate the damages due to total anthropogenic emissions. We 276 

include anthropogenic alterations to both Tx5d and annual average temperature in this calculation since 277 

changes in average temperature alter the marginal effect of Tx5d. We then perform the same calculation 278 

with the natural and leave-one-out time series, which yields damages due to all emissions other than a 279 

given actor. The difference between the total damages and these leave-one-out damages yields the 280 

damages attributable to the emissions of that actor. Supplementary Material Fig. 3 in Callahan and 281 

Mankin (30) provides a visual schematic of this calculation. 282 

 We incorporate uncertainty in this calculation by running 10,000 Monte Carlo simulations, where 283 

each simulation draws one sample from each of four distributions: one FaIR simulation, one set of Tx5d 284 

regression coefficients from Callahan and Mankin (5), one set of pattern scaling coefficients, and one 285 

regional income time series. When selecting the pattern scaling coefficients from the different climate 286 

model realizations, we down-weight models with more realizations, thus making each model equally 287 

likely to be sampled. The other samples are from uniform distributions. We use IPCC conventions for 288 

visualizing uncertainty, with the inner 66% range meaning “likely,” the 90% range meaning “very likely,” 289 

and the 99% range meaning “virtually certain” (44).  290 

 291 

Significance testing 292 

 We test the statistical significance of the damages we attribute with a Kolmogorov-Smirnov test. 293 

Specifically, in each region and year, we test whether the damages without a given contribution level are 294 

statistically distinguishable from the damages including that contribution. If these two distributions—295 

which incorporate uncertainty from the FaIR simulations, pattern scaling, income prediction, and Tx5d 296 
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regression coefficients—are likely not drawn from the same distribution (p < 0.05), then we consider the 297 

damages attributed to that contribution level to be statistically significant.   298 
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